EVEN POSITIVE DEFINITE UNIMODULAR QUADRATIC FORMS OVER $\mathbb{Q}(\sqrt{3})$

DAVID C. HUNG

Abstract

A complete list of even unimodular lattices over $\mathbb{Q}(\sqrt{3})$ is given for each dimension $n=2,4,6,8$. Siegel's mass formula is used to verify the completeness of the list. Alternate checks are given using theta series and the adjacency graph of the genus at the dyadic prime $1+\sqrt{3}$.

1. Introduction

The classification of positive definite even unimodular quadratic forms over \mathbb{Z} has a long history and is consummated in Niemeier's complete enumeration of all 24 -dimensional forms [10]. For dimensions greater than 24, the number of even unimodular forms grows exponentially, and complete classifications seem virtually impossible. In the case of real quadratic fields, Maass had determined in [8] all 4- and 8-dimensional even unimodular forms over the ring of integers of $\mathbb{Q}(\sqrt{5})$. Subsequently, all such forms were classified up to dimension 12 over $\mathbb{Q}(\sqrt{5})$ and up to dimension 8 over $\mathbb{Q}(\sqrt{2})$ (see $[4,14,6,7]$). In this paper we will investigate positive definite even unimodular forms over the ring of integers of $\mathbb{Q}(\sqrt{3})$. This field is interesting, as are $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{2})$, because they are the only real quadratic fields which admit new irreducible root systems, i.e., root systems other than the classical $A D E$-types. For small dimensions, the root system of an even unimodular form usually determines its class. As we will see in the following, this is no longer true for the 8 -dimensional forms over $\mathbb{Q}(\sqrt{3})$. In [15] Venkov gave an elegant proof of the classification of the 24-dimensional even unimodular forms over \mathbb{Z} by using the theory of modular forms with spherical coefficients. In particular, he showed that the rank of any nonempty root lattice must be maximal and that all irreducible components in it have the same Coxeter number. While these two properties remain true over $\mathbb{Q}(\sqrt{5})$ and over $\mathbb{Q}(\sqrt{2})$ in the classification cited earlier, they fail to hold over $\mathbb{Q}(\sqrt{3})$ for the 8 -dimensional forms. We will determine all classes of even unimodular forms up to dimension 8. Siegel's mass formula and his theorem for degree-one Hilbert-Einstein series are used to verify that our enumeration

[^0]is complete. We will also present an adjacency graph for the 8 -dimensional genus, which provides an alternative check of the completeness of the genus. For dimensions >8, a computation of the Minkowski-Siegel mass suggests that further algebraic classification by explicit enumerations is quite infeasible. Unless otherwise indicated, all terminology and notation will follow those of [11].

2. ANALYTIC MASS FORMULA

Let $F=\mathbb{Q}(\sqrt{3})$ and R be the ring of integers of F. Then $R=\mathbb{Z}[\varepsilon]$, where $\varepsilon=2+\sqrt{3}$ is the fundamental unit of F. Let L be a positive definite even unimodular R-lattice of rank n. Then $n \equiv 0 \bmod 2$ by consideration of the local dyadic structure of the lattice. Hence, there is a unique genus of such lattices in every even dimension. The Minkowski-Siegel mass of the genus of L is given by

$$
M(L)=\sum_{i=1}^{h} \frac{1}{e\left(L_{i}\right)},
$$

where $\left\{L_{1}, \ldots, L_{h}\right\}$ is a complete set of representatives of the isometry classes in the genus of L, and $e\left(L_{i}\right)$ is the order of the orthogonal group $O\left(L_{i}\right)$ of L_{i}. By the main theorem in Siegel's analytic theory of quadratic forms, this mass is equal to an infinite product of p-adic representation densities which, when computed, yield the following formula (see [13, 6]):

$$
M(L)=\frac{4^{1-n} L_{F}\left(n / 2, \chi_{n}\right) \prod_{i=1}^{n / 2-1} \zeta_{F}(2 i)}{(\sqrt{12})^{-n(n-1) / 2} \prod_{i=1}^{n} \pi^{i} \Gamma^{-2}(i / 2)},
$$

where $\chi_{n}(p)=(-1 / p)^{n / 2}, L_{F}\left(s, \chi_{n}\right)=\prod_{p}\left(1-\chi_{n}(p) N p^{-s}\right)^{-1}$, and $\zeta_{F}(\cdot)$ is the Dedekind zeta function. For $n \leq 8$, we have the following table of masses:

n	2	4	6	8
$M(L)$	$\frac{1}{2^{3} \cdot 3}$	$\frac{4}{2^{6} \cdot 3^{2}}$	$\frac{23}{2^{9} \cdot 3^{4} \cdot 5}$	$\frac{23^{2} \cdot 41^{2}}{2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7}$

3. 8-DIMENSIONAL FORMS

Let L be a positive definite even unimodular R-lattice of rank n. The root system of L is the set $L_{2}=\{x \in L: Q(x)=2\}$. The sublattice R_{L} of L generated by L_{2} is called the root lattice of L. Aside from the classical root systems of $A D E$-types, there is a new irreducible root system over R (see [9]), namely

$$
G_{2}=\left\langle e_{1}-e_{2}, \frac{1}{2}(1+\sqrt{3}) e_{1}+\frac{1}{2}(1-\sqrt{3}) e_{2}\right\rangle \cong\left[\begin{array}{cc}
2 & \sqrt{3} \\
\sqrt{3} & 2
\end{array}\right],
$$

where $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis. Since $\operatorname{det} G_{2}=1$, the root system G_{2} generates a 2-dimensional even unimodular lattice. Now if L is even unimodular of rank n, then $L \perp G_{2}$ is even unimodular of rank $n+2$, hence every
class of n-dimensional even unimodular lattices gives rise to a unique class of $(n+2)$-dimensional even unimodular lattices. We shall construct in this section all classes of 8 -dimensional even unimodular R-lattices. This will then yield complete classifications of the lower-dimensional genera. Our construction is based on Kneser's neighborhood method. For each of the lattices that we construct, we determine its root system and the order of its automorphism group with the assistance of a computer. If the root system of L generates a root lattice of maximal rank, then $e(L)$ may be computed as follows (see [3]). First we decompose the root lattice in L into irreducible components,

$$
R_{L}=L_{1} \perp L_{2} \perp \cdots \perp L_{t} .
$$

Then we let $G_{2}(L)$ be the factor group of $O(L)$ by the normal subgroup $S(L)$ consisting of those elements which leave invariant all the L_{i}. Moreover, let $G_{0}(L)$ be the normal subgroup of $S(L)$ consisting of those elements which, for all i, act trivially on $L_{i}^{\#} / L_{i}$. Here, $L_{i}^{\#}$ is the dual lattice of L_{i}. Finally, we let $G_{1}(L)$ be the factor group $S(L) / G_{0}(L)$. If we denote $g_{k}(L)=\left|G_{k}(L)\right|$ for $0 \leq k \leq 2$, then $e(L)=g_{0} g_{1} g_{2}$. On the other hand, if $\operatorname{rank} R_{L}<\operatorname{rank} L$, then the computation is more complicated. In any case, it is possible to find a base consisting of vectors of norm 2 or norm 4. By considering permutations of these vectors, $e(L)$ may be computed for lattices with nonmaximal root system.

We now construct the 8-dimensional even unimodular lattices.
(1) $R_{L}=E_{8}$. Let $I_{8}=\left\langle e_{1}, \ldots, e_{8}\right\rangle$, where $\left\{e_{i}\right\}$ is an orthonormal basis. Then

$$
\begin{aligned}
E_{8} & =\left\{z \in I_{8}: B\left(z, e_{1}+\cdots+e_{8}\right) \equiv 0 \bmod 2\right\}+\left\langle\left(e_{1}+\cdots+e_{8}\right) / 2\right\rangle \\
& =\left\langle e_{1}-e_{2},\left(e_{1}+\cdots+e_{8}\right) / 2, e_{1}+e_{2}, \cdots, e_{1}+e_{7}\right\rangle .
\end{aligned}
$$

E_{8} is already unimodular. Its automorphism group has order $e(L)=g_{0} g_{1} g_{2}=$ $\left(2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7\right) \cdot 1 \cdot 1=2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$.
(2) $R_{L}=D_{8}$. We have

$$
\begin{aligned}
D_{8} & =\left\{z \in I_{8}: B\left(z, e_{1}+\cdots+e_{8}\right) \equiv 0 \bmod 2\right\} \\
& =\left\langle e_{1}+e_{2}, e_{1}-e_{2}, \ldots, e_{1}-e_{8}\right\rangle .
\end{aligned}
$$

By adjoining the vectors

$$
w_{1}=\frac{1-\sqrt{3}}{2}\left[\left(e_{1}+e_{2}\right)+\left(e_{1}-e_{2}\right)\right]
$$

and

$$
w_{2}=\frac{1+\sqrt{3}}{2}\left[\left(e_{1}-e_{2}\right)+\cdots+\left(e_{1}-e_{8}\right)\right]
$$

to D_{8}, one obtains an even unimodular lattice

$$
L=\left\langle w_{1}, w_{2}, e_{1}-e_{3}, e_{1}-e_{4}, \ldots, e_{1}-e_{8}\right\rangle
$$

The automorphism group of L has order $e(L)=\left(2^{7} \cdot 8!\right) \cdot 2 \cdot 1=2^{15} \cdot 3^{2} \cdot 5 \cdot 7$.
(3) $R_{L}=E_{6} \perp G_{2}$. Since G_{2} is unimodular, it is necessary to construct a 6-dimensional unimodular lattice that has the root system E_{6}. Now

$$
E_{6}=\left\langle e_{1}-e_{2},\left(e_{1}+\cdots+e_{8}\right) / 2, e_{1}+e_{2}, e_{1}+e_{3}, e_{1}+e_{4}, e_{1}+e_{5}\right\rangle
$$

By adjoining the vector

$$
w=\frac{1}{\sqrt{3}}\left[\frac{e_{1}+\cdots+e_{8}}{2}+\left(e_{1}+e_{2}\right)+\cdots+\left(e_{1}+e_{5}\right)\right]
$$

to E_{6}, we have an even unimodular lattice

$$
L^{\prime}=\left\langle e_{1}-e_{2},\left(e_{1}+\cdots+e_{8}\right) / 2, e_{1}+e_{2}, \ldots, e_{1}+e_{4}, w\right\rangle
$$

The lattice $L=L^{\prime} \perp G_{2}$ has root system $E_{6} \perp G_{2}$. Its automorphism group has order $e(L)=\left(\left(2^{3} \cdot 3\right) \cdot\left(2^{7} \cdot 3^{4} \cdot 5\right)\right) \cdot 2 \cdot 1=2^{11} \cdot 3^{5} \cdot 5$.
(4) $R_{L}=D_{6} \perp G_{2}$. Again it is necessary to construct a 6-dimensional unimodular lattice that has the root system D_{6}. We have $D_{6}=\left\langle e_{1}+e_{2}\right.$, $\left.e_{1}-e_{2}, \ldots, e_{1}-e_{6}\right\rangle$. Two glue vectors are needed to give a unimodular lattice, namely,

$$
w_{1}=\frac{1+\sqrt{3}}{2}\left[\left(e_{1}+e_{2}\right)+\left(e_{1}-e_{2}\right)\right]
$$

and

$$
w_{2}=\frac{\sqrt{3}}{2}\left(e_{1}+e_{2}\right)+\frac{1}{2}\left(e_{1}-e_{2}\right)-\frac{1-\sqrt{3}}{2}\left[\left(e_{1}-e_{3}\right)+\cdots+\left(e_{1}-e_{6}\right)\right]
$$

Let $L^{\prime}=\left\langle w_{1}, w_{2}, e_{1}-e_{3}, \ldots, e_{1}-e_{6}\right\rangle$. Then the lattice $L=L^{\prime} \perp G_{2}$ has root system $D_{6} \perp G_{2}$. Its automorphism group has order

$$
e(L)=\left(\left(2^{3} \cdot 3\right) \cdot\left(2^{9} \cdot 3^{2} \cdot 5\right)\right) \cdot 2 \cdot 1=2^{13} \cdot 3^{3} \cdot 5
$$

(5) $R_{L}=2 D_{4}$ (I) (decomposable). We first construct a 4-dimensional even unimodular lattice with the root system D_{4}. Let $D_{4}=\left\langle e_{1}+e_{2}, e_{1}-e_{2}\right.$, $\left.e_{1}-e_{3}, e_{1}-e_{4}\right\rangle$. We adjoin the vectors

$$
w_{1}=\frac{1-\sqrt{3}}{2}\left[\left(e_{1}+e_{2}\right)+\left(e_{1}-e_{2}\right)\right]
$$

and

$$
w_{2}=\frac{1+\sqrt{3}}{2}\left[\left(e_{1}-e_{2}\right)+\left(e_{1}-e_{3}\right)+\left(e_{1}-e_{4}\right)\right]
$$

to D_{4}. Then $L^{\prime}=\left\langle w_{1}, w_{2}, e_{1}-e_{3}, e_{1}-e_{4}\right\rangle$ has root system D_{4}. Let $L=$ $L_{1}^{\prime} \perp L_{2}^{\prime}$ be the orthogonal sum of two copies of L^{\prime}. Then L has root system $2 D_{4}$. Its automorphism group has order $e(L)=\left(2^{6} \cdot 3\right)^{2} \cdot(3!)^{2} \cdot 2=2^{15} \cdot 3^{3}$.
(6) $R_{L}=2 D_{4}$ (II) (indecomposable). Let

$$
\begin{aligned}
2 D_{4} & =\left\langle e_{1}+e_{2}, e_{1}-e_{2}, e_{1}-e_{3}, e_{1}-e_{4}\right\rangle \perp\left\langle e_{5}+e_{6}, e_{5}-e_{6}, e_{5}-e_{7}, e_{5}-e_{8}\right\rangle \\
& =\left\langle u_{1}, u_{2}, u_{3}, u_{4}\right\rangle \perp\left\langle u_{5}, u_{6}, u_{7}, u_{8}\right\rangle
\end{aligned}
$$

If we adjoin the vectors

$$
w_{1}=\frac{\sqrt{3}}{2}\left(u_{1}+u_{2}\right)+\frac{1}{2}\left(u_{5}+u_{6}\right)
$$

and

$$
w_{2}=\frac{\sqrt{3}}{2}\left(u_{2}+u_{3}+u_{4}\right)+\frac{1}{2}\left(u_{6}+u_{7}+u_{8}\right)
$$

to $2 D_{4}$, we obtain an even unimodular lattice with the root system $2 D_{4}$. The lattice L is indecomposable and its automorphism group has order $e(L)=$ $\left(2^{6} \cdot 3\right)^{2} \cdot 3!\cdot 2=2^{14} \cdot 3^{3}$.
(7) $R_{L}=2 G_{2} \perp D_{4}$. It follows easily from the construction in (5) that there is an even unimodular lattice L with root system $2 G_{2} \perp D_{4}$. Its automorphism group has order $e(L)=\left(\left(2^{3} \cdot 3\right)^{2} \cdot\left(2^{6} \cdot 3\right)\right) \cdot 3!\cdot 2=2^{14} \cdot 3^{4}$.
(8) $R_{L}=4 G_{2} \cdot 4 G_{2}$ is already unimodular. Its automorphism group has order $e(L)=\left(2^{3} \cdot 3\right)^{4} \cdot 1 \cdot 4!=2^{15} \cdot 3^{5}$.
(9) $R_{L}=A_{5} \perp 3 A_{1}$. There is a basis $\left\{u_{1}, \ldots, u_{8}\right\}$ such that

$$
A_{5} \perp 3 A_{1}=\left\langle u_{1}, \ldots, u_{8}\right\rangle \cong\left(\begin{array}{ccccc}
2 & 1 & & & \\
& 2 & 1 & & \\
& & 2 & 1 & \\
& & & 2 & 1 \\
& & & & 2
\end{array}\right) \perp\langle 2\rangle \perp\langle 2\rangle \perp\langle 2\rangle
$$

Let L be the lattice with the basis

$$
\begin{aligned}
& \left\{\frac{1+\sqrt{3}}{2}\left(\sqrt{3} u_{7}-u_{8}\right), u_{7},\right. \\
& \frac{1+\sqrt{3}}{2 \sqrt{3}}\left[-u_{1}+2 u_{2}-3 u_{3}+(1-\sqrt{3}) u_{4}-\varepsilon^{-1} u_{5}+\sqrt{3} u_{6}\right], \\
& \frac{1}{2 \sqrt{3}}\left[-2 \varepsilon^{-1} u_{1}+(2-2 \sqrt{3}) u_{2}+\sqrt{3} u_{3}-2 u_{4}\right. \\
& \left.+(4-\sqrt{3}) u_{5}-\sqrt{3} u_{6}-3 u_{7}+\sqrt{3} u_{8}\right], \\
& \frac{1}{\sqrt{3}}\left[(2-2 \sqrt{3}) u_{1}-(1-2 \sqrt{3}) u_{2}-\sqrt{3} u_{3}+u_{4}-\varepsilon^{-1} u_{5}\right] \text {, } \\
& \frac{1}{2 \sqrt{3}}\left[-(1-\sqrt{3}) u_{1}+2 u_{2}+(3-\sqrt{3}) u_{3}-(2+4 \sqrt{3}) u_{4}\right. \\
& \left.+(1+3 \sqrt{3}) u_{5}-(3+\sqrt{3}) u_{6}\right], \\
& \frac{1}{2}\left[(5+\sqrt{3}) u_{1}-(6+2 \sqrt{3}) u_{2}+(3+\sqrt{3}) u_{3}-2 \varepsilon u_{4}\right. \\
& \left.+(1+\sqrt{3}) u_{5}-(1+\sqrt{3}) u_{6}\right], \\
& \frac{1}{2}\left[-(8-2 \sqrt{3}) u_{1}+6 u_{2}-(10-4 \sqrt{3}) u_{3}+(12-4 \sqrt{3}) u_{4}-(6-2 \sqrt{3}) u_{5}\right. \\
& \left.\left.+(1+\sqrt{3}) u_{6}-(3-\sqrt{3}) u_{7}\right]\right\} \text {. }
\end{aligned}
$$

Then L has the root system $A_{5} \perp 3 A_{1}$. Its automorphism group has order $e(L)=\left(2^{3} \cdot 6!\right) \cdot 2 \cdot 3!=2^{9} \cdot 3^{3} \cdot 5$.
(10) $R_{L}=4 A_{1} \perp D_{4}$. We shall construct an even unimodular lattice with the root system $4 A_{1} \perp D_{4}$. There is a basis $\left\{u_{1}, \ldots, u_{8}\right\}$ such that

$$
4 A_{1} \perp D_{4}=\left\langle u_{1}, \ldots, u_{8}\right\rangle \cong\langle 2\rangle \perp\langle 2\rangle \perp\langle 2\rangle \perp\langle 2\rangle \perp\left(\begin{array}{cccc}
2 & 0 & 1 & 1 \\
& 2 & 1 & 1 \\
& & 2 & 1 \\
& & & 2
\end{array}\right)
$$

Let L be the lattice with the basis

$$
\begin{aligned}
& \left\{\frac{1+\sqrt{3}}{2}\left(\sqrt{3} u_{3}-u_{4}\right), u_{3}\right. \\
& \quad \frac{1}{2}\left(\varepsilon u_{1}-\varepsilon u_{2}-\sqrt{3} u_{3}+u_{4}-u_{5}+u_{6}\right) \\
& \quad \frac{1}{2}\left[-(1-\sqrt{3}) u_{2}-\varepsilon^{-1} u_{5}-u_{6}+(1-\sqrt{3}) u_{7}-(1-\sqrt{3}) u_{8}\right] \\
& \quad-u_{7}+u_{8}, \frac{1}{2}\left[-(1+\sqrt{3}) u_{1}+\sqrt{3} u_{5}+u_{6}+(3+\sqrt{3}) u_{7}-(1+\sqrt{3}) u_{8}\right] \\
& \frac{1}{2}\left[-(3+\sqrt{3}) u_{1}+(1+\sqrt{3}) u_{2}+(1+\sqrt{3}) u_{5}-(1-\sqrt{3}) u_{6}\right] \\
& \left.\quad \frac{1}{2}\left[(1-\sqrt{3}) u_{1}-(2-2 \sqrt{3}) u_{2}-(3-\sqrt{3}) u_{3}-4 \varepsilon^{-1} u_{5}-u_{6}+4 \varepsilon^{-1} u_{7}\right]\right\}
\end{aligned}
$$

Then L is our desired lattice and its automorphism group has order $e(L)=$ $\left(2^{4} \cdot 192\right) \cdot 2 \cdot 4!=2^{14} \cdot 3^{2}$.
(11) $R_{L}=2 A_{1} \perp 2 A_{3}$. There is a basis $\left\{u_{1}, \ldots, u_{8}\right\}$ such that

$$
2 A_{1} \perp 2 A_{3}=\left\langle u_{1}, \ldots, u_{8}\right\rangle \cong\langle 2\rangle \perp\langle 2\rangle \perp\left(\begin{array}{lll}
2 & 1 & 0 \\
& 2 & 1 \\
& & 2
\end{array}\right) \perp\left(\begin{array}{lll}
2 & 1 & 0 \\
& 2 & 1 \\
& & 2
\end{array}\right)
$$

Let L be the lattice with the basis

$$
\left.\begin{array}{l}
\left\{\begin{array}{r}
\frac{1+\sqrt{3}}{2}\left(\sqrt{3} u_{1}-u_{2}\right), u_{1} \\
\frac{1}{2}\left(-u_{3}+2 u_{4}-u_{5}-\varepsilon u_{6}+2 \varepsilon u_{7}-\varepsilon u_{8}\right) \\
\frac{1}{4}\left[-(3-\sqrt{3}) u_{3}-(2-2 \sqrt{3}) u_{4}-(1+\sqrt{3}) u_{5}+(1-\sqrt{3}) u_{6}\right. \\
\\
\left.\quad-(2-2 \sqrt{3}) u_{7}-(1-\sqrt{3}) u_{8}\right] \\
\frac{1}{2}\left(-\sqrt{3} u_{1}+u_{2}-u_{3}+u_{5}+u_{6}-u_{8}\right), \\
\frac{1}{4}\left[-(3-\sqrt{3}) u_{1}-\varepsilon^{-1} u_{3}+2 \varepsilon^{-1} u_{4}-(2-3 \sqrt{3}) u_{5}-u_{6}+2 u_{7}-3 u_{8}\right] \\
\frac{1}{2}\left(-\sqrt{3} u_{3}-\sqrt{3} u_{5}+u_{6}+u_{8}\right), \frac{1}{2}\left[(1-\sqrt{3}) u_{3}-(3+\sqrt{3}) u_{5}\right. \\
\\
\\
\end{array} \quad+(1-\sqrt{3}) u_{6}+(1+\sqrt{3}) u_{8}\right]
\end{array}\right\} .
$$

Then L has the root system $2 A_{1} \perp 2 A_{3}$ and its automorphism group has order $e(L)=(2 \cdot 4!)^{2} \cdot 2 \cdot 2^{2}=2^{11} \cdot 3^{2}$.
(12) $R_{L}=G_{2} \perp 6 A_{1}$. It is necessary to construct a 6-dimensional even unimodular lattice that has the root system $6 A_{1}$. There is a basis $\left\{u_{1}, \ldots, u_{6}\right\}$ such that

$$
6 A_{1}=\left\langle u_{1}, \ldots, u_{6}\right\rangle \cong\langle 2\rangle \perp \cdots \perp\langle 2\rangle .
$$

Let L^{\prime} be the lattice with the basis

$$
\begin{gathered}
\left\{\frac{1}{2}\left(\sqrt{3} u_{1}+u_{2}+\cdots+u_{6}\right), \frac{1+\sqrt{3}}{2}\left(u_{1}+u_{2}\right)\right. \\
\frac{1-\sqrt{3}}{2}\left(u_{2}+u_{3}\right), \frac{1+\sqrt{3}}{2}\left(u_{3}+u_{4}\right) \\
\left.\quad \frac{1-\sqrt{3}}{2}\left(u_{4}+u_{5}\right), \frac{1+\sqrt{3}}{2}\left(u_{5}+u_{6}\right)\right\}
\end{gathered}
$$

Then L^{\prime} has the root system $6 A_{1}$. The lattice $L=G_{2} \perp L^{\prime}$ is even unimodular with root system $G_{2} \perp 6 A_{1}$. Its automorphism group has order $e(L)=$ $\left(\left(2^{3} \cdot 3\right) \cdot 2^{6}\right) \cdot 1 \cdot\left(2^{4} \cdot 3^{2} \cdot 5\right)=2^{13} \cdot 3^{3} \cdot 5$.
(13) $R_{L}=4 A_{2}$. There is a basis $\left\{u_{1}, \ldots, u_{8}\right\}$ such that

$$
4 A_{2}=\left\langle u_{1}, \ldots, u_{8}\right\rangle \cong\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \perp\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \perp\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \perp\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Let L be the lattice with the basis

$$
\begin{aligned}
& \left\{u_{3}-u_{4}-\sqrt{3} u_{7}+\sqrt{3} u_{8},-u_{7}+u_{8}\right. \\
& \frac{1}{3}\left[-2 \varepsilon u_{1}+\varepsilon u_{2}+(1+\sqrt{3}) u_{3}+(1+\sqrt{3}) u_{4}-2 u_{5}+u_{6}\right] \\
& \frac{1}{\sqrt{3}}\left[2 u_{3}-(1+\sqrt{3}) u_{4}+u_{5}-\varepsilon^{-1} u_{6}-\varepsilon u_{7}+(1+2 \sqrt{3}) u_{8}\right] \\
& \frac{1}{3}\left(-u_{1}+2 u_{2}+u_{3}-2 u_{4}+u_{5}-2 u_{6}-\sqrt{3} u_{7}+2 \sqrt{3} u_{8}\right) \\
& \frac{1}{3}\left[-2 u_{1}+u_{2}-(2-2 \sqrt{3}) u_{5}+(1-\sqrt{3}) u_{6}-2 \varepsilon^{-1} u_{7}+(5-\sqrt{3}) u_{8}\right] \\
& \frac{1}{3}\left[u_{1}+u_{2}-\varepsilon^{-1} u_{3}-\varepsilon^{-1} u_{4}+(3-3 \sqrt{3}) u_{6}+(1-\sqrt{3}) u_{7}+(1-\sqrt{3}) u_{8}\right] \\
& \frac{1}{3}\left[(1-\sqrt{3}) u_{1}+(1-\sqrt{3}) u_{2}+(1-\sqrt{3}) u_{3}+(1-\sqrt{3}) u_{4}+(6-2 \sqrt{3}) u_{5}\right. \\
& \left.\left.\quad-\sqrt{3} u_{6}-(10-4 \sqrt{3}) u_{7}+(8-5 \sqrt{3}) u_{8}\right]\right\}
\end{aligned}
$$

Then L has the root system $4 A_{2}$ and its automorphism group has order $e(L)=$ $(3!)^{4} \cdot 2 \cdot 12=2^{7} \cdot 3^{5}$.
(14) $R_{L}=8 A_{1}$ (I). There are three inequivalent classes of even unimodular lattices with the root system $8 A_{1}$. We construct the first one here. There is a
basis $\left\{u_{1}, \ldots, u_{8}\right\}$ such that

$$
8 A_{1}=\left\langle u_{1}, \ldots, u_{8}\right\rangle \cong\langle 2\rangle \perp \cdots \perp\langle 2\rangle .
$$

Let L be the lattice with the basis

$$
\begin{aligned}
& \left\{\frac{1}{2}\left(-u_{1}+u_{2}+u_{3}+\cdots+u_{8}\right), \frac{1+\sqrt{3}}{2}\left(\sqrt{3} u_{1}-u_{2}\right)\right. \\
& \quad \frac{1}{2}\left(\sqrt{3} u_{1}-u_{2}+\sqrt{3} u_{7}+u_{8}\right), \frac{1-\sqrt{3}}{2}\left(u_{7}-u_{8}\right) \\
& \frac{1}{2}\left(-\sqrt{3} u_{5}-u_{6}+u_{7}+\sqrt{3} u_{8}\right), \frac{1-\sqrt{3}}{2}\left(u_{5}-u_{6}\right) \\
& \left.\quad \frac{1}{2}\left(-\sqrt{3} u_{3}-u_{4}+u_{5}+\sqrt{3} u_{6}\right), \frac{1+\sqrt{3}}{2}\left(\sqrt{3} u_{3}-u_{4}\right)\right\}
\end{aligned}
$$

Then L has the root system $8 A_{1}$. Its automorphism group has order $e(L)=$ $2^{8} \cdot 1 \cdot\left(2^{4} \cdot 4!\right)=2^{15} \cdot 3$.
(15) $R_{L}=8 A_{1}$ (II). Let $8 A_{1}=\left\langle u_{1}, \ldots, u_{8}\right\rangle \cong\langle 2\rangle \perp \cdots \perp\langle 2\rangle$. We construct a lattice L with the basis

$$
\begin{aligned}
& \left\{\frac{1+\sqrt{3}}{2}\left(-\sqrt{3} u_{7}+u_{8}\right), u_{7}\right. \\
& \frac{1}{2}\left(\sqrt{3} u_{5}-u_{6}-\sqrt{3} u_{7}+u_{8}\right), u_{5}, u_{4} \\
& \frac{1}{2}\left(u_{1}+\varepsilon u_{2}+u_{3}-\varepsilon u_{4}\right) \\
& \frac{1}{2}\left[\varepsilon^{-1} u_{1}+u_{2}-(3-\sqrt{3}) u_{5}-(3-\sqrt{3}) u_{7}\right] \\
& \left.\frac{1}{2}\left[(1-\sqrt{3}) u_{1}-(1-\sqrt{3}) u_{3}-\sqrt{3} u_{5}+u_{6}\right]\right\}
\end{aligned}
$$

Then L has the root system $8 A_{1}$. Its automorphism group has order $e(L)=$ $2^{8} \cdot 1 \cdot 2^{7}=2^{15}$.
(16) $R_{L}=8 A_{1}$ (III). Again we let $8 A_{1}=\left\langle u_{1}, \ldots, u_{8}\right\rangle \cong\langle 2\rangle \perp \cdots \perp\langle 2\rangle$. Let L be the lattice with the basis

$$
\begin{aligned}
& \left\{\frac{1+\sqrt{3}}{2}\left(\sqrt{3} u_{7}-u_{8}\right), u_{7}\right. \\
& \frac{1+\sqrt{3}}{2}\left(\varepsilon^{-1} u_{5}-\varepsilon^{-1} u_{6}\right), \frac{1+\sqrt{3}}{2}\left(u_{4}-\sqrt{3} u_{6}\right), \frac{1+\sqrt{3}}{2}\left(\varepsilon^{-1} u_{5}+\sqrt{3} \varepsilon^{-1} u_{7}\right) \\
& \frac{1}{2}\left(u_{1}+\varepsilon u_{2}+u_{3}+u_{4}-\varepsilon u_{5}-\sqrt{3} u_{6}-\sqrt{3} u_{7}+u_{8}\right) \\
& \\
& \left.\frac{1+\sqrt{3}}{2}\left(\varepsilon^{-1} u_{1}+u_{2}\right), \frac{1-\sqrt{3}}{2}\left(u_{1}-u_{3}\right)\right\}
\end{aligned}
$$

Then L has the root system $8 A_{1}$ and its automorphism group has order $e(L)=$ $2^{8} \cdot 1 \cdot 8!=2^{15} \cdot 3^{2} \cdot 5 \cdot 7$.

In the following we will consider lattices the root system of which does not generate a root lattice of maximal rank. Here it is no longer possible to construct the lattices by adjoining glue vectors to the root lattice. Instead we shall construct them as neighbors of the lattices previously obtained by the glue method.
(17) $R_{L}=D_{4}$. Let $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ be the basis of $L_{4 A_{1} \perp D_{4}}$ given in (10) and take L to be the neighbor of $L_{4 A_{1} \perp D_{4}}$ which contains the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{3}+\sqrt{3} u_{4}+u_{8}\right)$. Then L has the root system D_{4} and its automorphism group has order $e(L)=2^{12} \cdot 3^{3}$.
(18) $R_{L}=A_{4}$. Consider the basis $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ of $L_{A_{5} \perp 3 A_{1}}$ given in (9). Let L be the neighbor of $L_{A_{5} \perp 3 A_{1}}$ which contains the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{4}+\sqrt{3} u_{5}+u_{7}+u_{8}\right)$. Then L has the root system A_{4}. Its automorphism group has order $e(L)=2^{7} \cdot 3^{2} \cdot 5^{2}$.
(19) $R_{L}=A_{3}$. Again consider the basis $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ of $L_{4 A_{1} \perp D_{4}}$ given in (10). Let L be the neighbor of $L_{4 A_{1} \perp D_{4}}$ which contains the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{3}+u_{8}\right)$. Then L has the root system A_{3} and its automorphism group has order $e(L)=2^{9} \cdot 3^{3} \cdot 5$.
(20) $R_{L}=G_{2}$. It is necessary to construct a 6-dimensional even unimodular lattice with an empty root system. Let $\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$ be the basis of the 6-dimensional lattice with root system $6 A_{1}$ as given in (12). We take L^{\prime} to be its neighbor which contains the vector $\frac{1-\sqrt{3}}{2}\left(u_{1}+u_{2}\right)$. Then L^{\prime} has an empty root system, hence $L=G_{2} \perp L^{\prime}$ is our desired lattice. Its automorphism group has order $e(L)=2^{11} \cdot 3^{5} \cdot 5$.
(21) $R_{L}=2 A_{2}$ (I). There are two inequivalent classes of even unimodular lattices with the root system $2 A_{2}$. The first class arises as a neighbor of $L_{2 A_{1} \perp 2 A_{3}}$. Let $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ be the basis of $L_{2 A_{1} \perp 2 A_{3}}$ given in (11) and let L be the neighbor of $L_{2 A_{1} \perp 2 A_{3}}$ which contains the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{5}+\sqrt{3} u_{6}+u_{7}\right)$. Then L has the root system $2 A_{2}$ and its automorphism group has order $e(L)=2^{6} \cdot 3^{4}$.
(22) $R_{L}=2 A_{2}$ (II). The second class of lattices with root system $2 A_{2}$ can be obtained as a neighbor of $L_{A_{5} \perp 3 A_{1}}$. Using the basis $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ given in (9) for $L_{A_{5} \perp 3 A_{1}}$ and taking its neighbor which contains the vector $\frac{1-\sqrt{3}}{2}\left[\sqrt{3} u_{4}+u_{7}+(1+\sqrt{3}) u_{8}\right]$, we obtain a lattice L with root system $2 A_{2}$. The automorphism group of L has order $e(L)=2^{7} \cdot 3^{4}$.
(23) $R_{L}=4 A_{1}$ (I). Again there are two inequivalent classes of even unimodular lattices with the root system $4 A_{1}$. First we let $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ be the basis of $L_{8 A_{1}(\mathrm{I})}$ given in (14). Let L be the neighbor of $L_{8 A_{1}(\mathrm{I})}$ which contains the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{1}+u_{7}+u_{8}\right)$. Then L has the root system $4 A_{1}$. Its automorphism group has order $e(L)=2^{12}$.
(24) $R_{L}=4 A_{1}$ (II). Here we use the basis $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ given in (15) for $L_{8 A_{1} \text { (II) }}$ and take its neighbor which contains the vector
$\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{5}+\sqrt{3} u_{7}+u_{8}\right)$. This yields a lattice L of root system $4 A_{1}$. For later references, we give a basis for this lattice: $\left\{(1+\sqrt{3}) u_{1}, u_{2}, u_{3}, u_{1}-u_{4}, u_{5}\right.$, $\left.u_{4}-u_{6}, u_{6}-u_{7}, \frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{5}+\sqrt{3} u_{7}+u_{8}\right)\right\}$. Its automorphism group has order $e(L)=2^{10} \cdot 3$.
(25) $\quad R_{L}=2 A_{1}$. Consider the basis $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ of $L_{8 A_{1}(\mathrm{II})}$ given in (15). Let L be the neighbor of $L_{8 A_{1}(\text { II })}$ which contains the vector $\frac{1-\sqrt{3}}{2}\left[\sqrt{3} u_{6}+(1+\sqrt{3}) u_{7}+u_{8}\right]$. Then L has the root system $2 A_{1}$ and its automorphism group has order $e(L)=2^{11} \cdot 3^{2}$.

We observed in (20) that there exists a 6-dimensional even unimodular lattice with no minimal vectors. Using a method which is analogous to that used in [4] (see also [12]) for 12-dimensional even unimodular lattices over $\mathbb{Q}(\sqrt{5})$, one can show that empty root lattices exist over $\mathbb{Q}(\sqrt{3})$ in each even dimension $n \geq 6$. More specifically, take K to be the 2-dimensional even unimodular lattice G_{2} and let $\bar{K}=K / 2 K$ be the reduction of $K \bmod 2$. Then the quadratic $\operatorname{map} Q: K \rightarrow R$ induces a nondegenerate quadratic map $\bar{Q}: \bar{K} \rightarrow R / 4 R$. \bar{K} is hyperbolic, so $\bar{K}=A \oplus A^{\prime}$, where A, A^{\prime} are totally singular. Let $B=$ $\{(x, \ldots, x): x \in A\}, B^{\prime}=B^{\perp} \cap\left(A^{\prime}\right)^{n}$, and $C=B \oplus B^{\prime}$. Put $L=\{v \in$ $\left.K^{n}: \bar{v} \in C\right\}$, and define the quadratic map on L as $Q_{L}=\frac{1}{2} Q^{n}$, where Q^{n} is the quadratic map on K^{n} induced by Q. Then L is an even unimodular lattice of rank $2 n$. Suppose $v=\left(v_{1}, \ldots, v_{n}\right) \in L$ is a minimal vector. Then $Q_{L}(v)=2$, hence $Q^{n}(v)=4$. We set $\bar{v}_{i}=x+y_{i}, x \in A, y_{i} \in A$. If no \bar{v}_{i} vanishes, then it follows from the inequality between the arithmetic and geometric means that

$$
N(4)=N\left(\sum Q\left(v_{i}\right)\right) \geq n^{2} \sqrt[n]{N\left(\prod_{i=1}^{n} Q\left(v_{i}\right)\right)} \geq 4 n^{2}
$$

This is impossible when $n \geq 3$. For such n, some \bar{v}_{i} must vanish, which implies that $\bar{v}_{i}=y_{i}$ for all i. This means that $Q\left(v_{i}\right) \in 4 R$. Let $Q\left(v_{i}\right)=4 \alpha_{i}$, where $\alpha_{i} \in R$. Since $Q^{n}(v)=4$, we have $\sum_{i=1}^{n} \alpha_{i}=1$, where the α_{i} are totally positive integers. It follows that $\alpha_{j}=1$ for some j and $\alpha_{i}=0$ for all $i \neq j$. On the other hand, by construction, we have $\sum \bar{v}_{i}=0$, which implies that $Q^{n}(v)=Q\left(v_{j}\right) \in 8 R$. This is a contradiction and hence we obtain

Proposition. For each $n \geq 3$ there exists an even unimodular lattice over $\mathbb{Q}(\sqrt{3})$ of rank $2 n$ which has an empty root system.

We now continue our construction of 8 -dimensional even unimodular lattices over $\mathbb{Q}(\sqrt{3})$. All remaining lattices will have empty root system.
(26) $R_{L}=\varnothing(\mathrm{I})$. Let $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ be the basis of $L_{8 A_{1}(\mathrm{I})}$ given in (14) and let L be its neighbor containing the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{3}+u_{7}\right)$. Then L has empty root system and its automorphism group has order $e(L)=2^{11} \cdot 3^{3} \cdot 5$.
(27) $R_{L}=\varnothing$ (II). We use the basis $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ of $L_{8 A_{1}(\mathrm{II})}$ given in (15) and take L to be its neighbor containing the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{3}+u_{6}\right)$. Then L has empty root system and its automorphism group has order $e(L)=2^{11} \cdot 3^{2}$.
(28) $R_{L}=\varnothing$ (III). Consider the basis $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ of $L_{8 A_{1}(\mathrm{I})}$ given in (14). Let L be the neighbor of $L_{8 A_{1}(\mathrm{I})}$ containing the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{1}+\sqrt{3} u_{6}+u_{8}\right)$. Then L has empty root system and its automorphism group has order $e(L)=2^{14} \cdot 3^{3}$.
(29) $R_{L}=\varnothing$ (IV). Let $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ be the basis of $L_{4 A_{1}(\mathrm{II})}$ given in (24). We take L to be the neighbor of $L_{4 A_{1}(\mathrm{II})}$ containing the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{3}+u_{6}\right)$. Then L has an empty root system and its automorphism group has order $e(L)=2^{7} \cdot 3^{5}$.
(30) $R_{L}=\varnothing(\mathrm{V})$. Consider the basis $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ of $L_{8 A_{1} \text { (III) }}$ given in (16) and take L to be its neighbor containing the vector

$$
\frac{1-\sqrt{3}}{2}\left[\sqrt{3} u_{1}+\sqrt{3} u_{2}+\sqrt{3} u_{4}+\sqrt{3} u_{5}+\sqrt{3} u_{6}+(1+\sqrt{3}) u_{7}+u_{8}\right]
$$

Then L has an empty root system and its automorphism group has order $e(L)=2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$.
(31) $R_{L}=\varnothing$ (VI). Let $\left\{u_{1}, u_{2}, \ldots, u_{8}\right\}$ be the basis of $L_{4 A_{1}(\mathrm{II})}$ given in (24) and let L be its neighbor containing the vector $\frac{1-\sqrt{3}}{2}\left(\sqrt{3} u_{3}+u_{7}\right)$. Then L has an empty root system and its automorphism group has order $e(L)=2^{7} \cdot 3^{3} \cdot 5$.

This completes our construction of 8 -dimensional even unimodular lattices over $\mathbb{Q}(\sqrt{3})$. We summarize our computations in Table 1.

Upon summing the reciprocals of the $e\left(L_{i}\right)$, we obtain

$$
\sum_{i=1}^{31} \frac{1}{e\left(L_{i}\right)}=\frac{23^{2} \cdot 41^{2}}{2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7}
$$

which is exactly the mass predicted by the mass formula. Thus we have:
Theorem 1. There are precisely 31 distinct classes in the genus of positive definite even unimodular lattices of rank 8 over $\mathbb{Q}(\sqrt{3})$.

As an immediate consequence of Theorem 1 and the remark made in the first paragraph of this section, we have

Theorem 2. (1) There are precisely six distinct classes of positive definite even unimodular lattices of rank 6 over $\mathbb{Q}(\sqrt{3})$, which are distinguished by their root systems $E_{6}, D_{6}, D_{4} \perp G_{2}, 3 G_{2}, 6 A_{1}$, and \varnothing.
(2) There are precisely two distinct classes of positive definite even unimodular lattices of rank 4 over $\mathbb{Q}(\sqrt{3})$, which are distinguished by their root systems D_{4} and $2 G_{2}$.
(3) There is precisely one class of positive definite even unimodular lattice of rank 2 over $\mathbb{Q}(\sqrt{3})$, namely G_{2}.

Table 1
Even unimodular lattices over $\mathbb{Q}(\sqrt{3})$ and the orders of their automorphism groups

L_{i}	$g_{0}\left(L_{i}\right)$	$g_{1}\left(L_{i}\right)$	$g_{2}\left(L_{i}\right)$	$e\left(L_{i}\right)$
E_{8}	$2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$	1	1	$2^{14} \cdot 3^{2} \cdot 5 \cdot 7$
D_{8}	$2^{7} \cdot 8$!	2	1	$2^{15} \cdot 3^{2} \cdot 5 \cdot 7$
$E_{6} \perp G_{2}$	$\left(2^{7} \cdot 3^{4} \cdot 5\right) \cdot\left(2^{3} \cdot 2\right)$	2	1	$2^{11} \cdot 3^{5} \cdot 5$
$D_{6} \perp G_{2}$	$\left(2^{9} \cdot 3^{2} \cdot 5\right) \cdot\left(2^{3} \cdot 3\right)$	2	1	$2^{12} \cdot 3^{3} \cdot 5$
$2 D_{4}$ (I)	$\left(2^{6} \cdot 3\right)^{2}$	$(3!)^{2}$	2	$2^{15} \cdot 3^{4}$
$2 D_{4}$ (II)	$\left(2^{6} \cdot 3\right)^{2}$	$3!$	2	$2^{14} \cdot 3^{3}$
$2 G_{2} \perp D_{4}$	$\left(2^{3} \cdot 3\right)^{2} \cdot\left(2^{6} \cdot 3\right)$	$3!$	2	$2^{14} \cdot 3^{4}$
$4 G_{2}$	$\left(2^{3} \cdot 3\right)^{4}$	1	$4!$	$2^{15} \cdot 3^{5}$
$A_{5} \perp 3 A_{1}$	$2^{3} \cdot 6$!	2	$3!$	$2^{9} \cdot 3^{3} \cdot 5$
$D_{4} \perp 4 A_{1}$	$2^{4} \cdot 192$	2	4!	$2^{14} \cdot 3^{2}$
$2 A_{3} \perp 2 A_{1}$	$(2 \cdot 4!)^{2}$	2	2^{2}	$2^{11} \cdot 3^{2}$
$G_{2} \perp 6 A_{1}$	$\left(2^{3} \cdot 3\right) \cdot 2^{6}$	1	$2^{4} \cdot 3^{2} \cdot 5$	$2^{13} \cdot 3^{3} \cdot 5$
$4 A_{2}$	$(3!)^{4}$	2	12	$2^{7} \cdot 3^{5}$
$8 A_{1}$ (I)	2^{8}	1	$2^{4} \cdot 4!$	$2^{15} \cdot 3$
$8 A_{1}$ (II)	2^{8}	1	2^{7}	2^{14}
$8 A_{1}$ (III)	2^{8}	1	8!	$2^{15} \cdot 3^{2} \cdot 5 \cdot 7$
D_{4}	-	-	-	$2^{12} \cdot 3^{3}$
A_{4}	-	-	-	$2^{7} \cdot 3^{2} \cdot 5^{2}$
A_{3}	-	-	-	$2^{9} \cdot 3^{3} \cdot 5$
G_{2}	-	-	-	$2^{11} \cdot 3^{5} \cdot 5$
$2 A_{2}$ (I)	-	-	-	$2^{6} \cdot 3^{4}$
$2 A_{2}$ (II)	-	-	-	$2^{7} \cdot 3^{4}$
$4 A_{1}$ (I)	-	-	-	2^{12}
$4 A_{1}$ (II)	-	-	-	$2^{10} \cdot 3$
$2 A_{1}$	-	-	-	$2^{11} \cdot 3^{2}$
\varnothing (I)	-	-	-	$2^{11} \cdot 3^{3} \cdot 5$
\varnothing (II)	-	-	-	$2^{11} \cdot 3^{2}$
\varnothing (III)	-	-	-	$2^{14} \cdot 3^{3}$
\varnothing (IV)	-	-	-	$2^{7} \cdot 3^{5}$
\varnothing (V)	-	-	-	$2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7$
$\varnothing(\mathrm{VI})$	-	-	-	$2^{7} \cdot 3^{3} \cdot 5$

Remark. In [15] Venkov showed that if $R_{L} \neq \varnothing$, then the root system R_{L} of a 24 -dimensional even unimodular lattice L over \mathbb{Z} possesses the following
properties:
(1) rank R_{L} is maximal (i.e., rank $R_{L}=24$), and
(2) all irreducible components of R_{L} have the same Coxeter number.

These properties remain true for even unimodular lattices over $\mathbb{Q}(\sqrt{5})$ in dimensions up to 12 , and over $\mathbb{Q}(\sqrt{2})$ in dimensions up to 8 (see [4, 7]), but no longer hold over $\mathbb{Q}(\sqrt{3})$ when the dimension is 8 .

4. Theta series

Let $H^{+} \times H^{-}=\left\{\left(z_{1}, z_{2}\right): \operatorname{Im} z_{1}>0\right.$, $\left.\operatorname{Im} z_{2}<0\right\}$, i.e., $H^{+} \times H^{-}$is the product of the upper half plane and the lower half plane. A Hilbert modular form of weight k for the Hilbert modular group $S L_{2}(\mathbb{Z}[\varepsilon])$ is a holomorphic function f on $H^{+} \times H^{-}$satisfying the condition

$$
f\left(\frac{a z_{1}+b}{c z_{1}+d}, \frac{\bar{d} z_{2}+\bar{b}}{\bar{c} z_{2}+\bar{d}}\right)=\left(c z_{1}+d\right)^{k}\left(\bar{c} z_{2}+\bar{d}\right)^{k} f\left(z_{1}, z_{2}\right)
$$

for any matrix $\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z}[\varepsilon])$. Here, \bar{a} is the conjugation of a. Every Hilbert modular form f has a Fourier expansion of the form

$$
f(z)=c_{f}(0)+\sum_{\nu \gg 0} c_{f}(\nu) e^{2 \pi i \sigma(\nu z / 2 \sqrt{3})}
$$

Let L be an even unimodular lattice over $\mathbb{Q}(\sqrt{3})$ of rank n. Then the theta series of L,

$$
\Theta_{L}(z)=\sum_{x \in L} e^{2 \pi i \sigma(Q(x) z / 2 \sqrt{3})}=1+\sum_{\nu \gg 0} c_{L}(\nu) e^{2 \pi i \sigma(\nu z / 2 \sqrt{3})},
$$

is a Hilbert modular form of weight $\frac{n}{2}$, where $c_{L}(\nu)=\#\{x \in L: Q(x)=2 \nu\}$. If $L_{1}=L, L_{2}, \ldots, L_{h}$ is a complete set of representatives of the distinct classes in the genus gen L of L, then Siegel's theorem on the average number of representations of a number by gen L is given by

$$
\begin{equation*}
\frac{1}{M(L)} \sum_{i=1}^{h} \frac{\Theta_{L_{i}}(z)}{e\left(L_{i}\right)}=G_{n / 2}(z) \tag{*}
\end{equation*}
$$

where $G_{n / 2}(z)=1+\sum c_{n / 2}(\nu) e^{2 \pi i \sigma(\nu z / 2 \sqrt{3})}$ is the Eisenstein series of weight $\frac{n}{2}$. From [5] we have

$$
c_{n / 2}(\nu)=b_{n / 2} \sum_{(\beta) \mid(\nu)}(\operatorname{sign} N \beta)^{n / 2}|N \beta|^{n / 2-1}
$$

and

$$
b_{n / 2}=\frac{(2 \pi)^{n} \sqrt{12}}{\left(\Gamma\left(\frac{n}{2}\right)\right)^{2} 12^{n / 2} \zeta_{\mathbb{Q}(\sqrt{3})}\left(\frac{n}{2}\right)}
$$

For $n=8$, we compute

$$
b_{4}=\frac{(2 \pi)^{8} \sqrt{12}}{(3!)^{2} 12^{4} \zeta_{Q(\sqrt{3})}(4)}=\frac{240}{23} .
$$

Applying $(*)$ to the genus of 8 -dimensional even unimodular lattices, we have

$$
\frac{1}{M_{8}} \times \sum_{i=1}^{h} \frac{c_{L_{i}}(1)}{e\left(L_{i}\right)}=b_{4}=\frac{240}{23}
$$

Using the 31 lattices in the genus and $M(L)=M_{8}$, we obtain

$$
\begin{aligned}
\frac{1}{M_{8}} \times \sum_{i=1}^{31} \frac{c_{L_{i}}(1)}{e\left(L_{i}\right)}= & \frac{2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7}{23^{2} \cdot 41^{2}} \\
& \cdot\left(\frac{2^{4} \cdot 3 \cdot 5}{2^{14} \cdot 3^{5} \cdot 5^{2} \cdot 7}+\frac{2^{4} \cdot 7}{2^{15} \cdot 3^{2} \cdot 5 \cdot 7}+\frac{2^{2} \cdot 3 \cdot 7}{2^{11} \cdot 3^{5} \cdot 5}\right. \\
& +\frac{2^{3} \cdot 3^{2}}{2^{13} \cdot 3^{3} \cdot 5}+\frac{2^{4} \cdot 3}{2^{15} \cdot 3^{4}}+\frac{2^{4} \cdot 3}{2^{14} \cdot 3^{3}}+\frac{2^{4} \cdot 3}{2^{14} \cdot 3^{4}} \\
& +\frac{2^{4} \cdot 3}{2^{15} \cdot 3^{5}}+\frac{2^{2} \cdot 3^{2}}{2^{9} \cdot 3^{3} \cdot 5}+\frac{2^{5}}{2^{14} \cdot 3^{2}}+\frac{2^{2} \cdot 7}{2^{11} \cdot 3^{2}} \\
& +\frac{2^{3} \cdot 3}{2^{13} \cdot 3^{3} \cdot 5}+\frac{2^{3} \cdot 3}{2^{7} \cdot 3^{5}}+\frac{2^{4}}{2^{15} \cdot 3}+\frac{2^{4}}{2^{15}} \\
& +\frac{2^{4}}{2^{15} \cdot 3^{2} \cdot 5 \cdot 7}+\frac{2^{3} \cdot 3}{2^{12} \cdot 3^{3}}+\frac{2^{2} \cdot 5}{2^{7} \cdot 3^{2} \cdot 5} \\
& +\frac{2^{2} \cdot 3}{2^{9} \cdot 3^{3} \cdot 5}+\frac{2^{2} \cdot 3}{2^{11} \cdot 3^{5} \cdot 5}+\frac{2^{2} \cdot 3}{2^{6} \cdot 3^{4}}+\frac{2^{2} \cdot 3}{2^{7} \cdot 3^{4}} \\
& \left.+\frac{2^{3}}{2^{12}}+\frac{2^{3}}{2^{10} \cdot 3}+\frac{2^{2}}{2^{11} \cdot 3^{2}}\right)=\frac{240}{23} .
\end{aligned}
$$

This calculation shows that the only lattices which admit vectors of quadratic norm 2 are exactly those previously obtained in our constructions.

5. ADJACENCY GRAPH

We present in this section an adjacency graph for the 8-dimensional genus of even unimodular lattices of $\mathbb{Q}(\sqrt{3})$ at a dyadic prime. Let p be the ideal generated by $(1+\sqrt{3})$. For a lattice L in the genus, the vertices of the graph $R(L, p)$ are those lattices $M \in G=\operatorname{gen} L$ such that $M_{q}=L_{q}$ for all primes $q \neq p$. Two vertices M and M^{\prime} are joined by an edge in $R(L, p)$ if $\left[M: M \cap M^{\prime}\right]=\left[M^{\prime}: M \cap M^{\prime}\right]=N p$, where $N p$ is the number of residue classes $\bmod p$. In this case, we say that M and M^{\prime} are neighbors (or adjacent) in $R(L, p)$. If $K \in|R(L, p)|$, then $R(L, p)$ contains a representative of every class in the proper spinor genus $\operatorname{spn}^{+}(K)$. Let J_{F}^{G} be the subgroup of the idele group J_{F} consisting of those ideals $\left(i_{q}\right)$ such that $i_{q} \in \theta\left(O^{+}\left(L_{q}\right)\right)$ for all $q<\infty$, where θ is the spinor norm function. Let P_{D} be the subgroup of
principal ideles with respect to $D=\theta\left(O^{+}(V)\right)$. By a routine computation, we have $\left[J_{F}: P_{D} J_{F}^{G}\right]=2$, hence there are two proper spinor genera in the genus of L. Let $g^{+}(L, p)$ be the number of proper spinor genera represented by $R(L, p)$. Then a result in [2] shows that

$$
g^{+}(L, p)=1 \quad \text { if and only if } j(p) \in P_{D} J_{F}^{G}
$$

where $j(p) \in J_{F}$ is defined by

$$
j(p)_{q}= \begin{cases}1, & q \neq p \\ \pi, & q=p\end{cases}
$$

Here, π is a fixed prime element in F_{p}. For the graph of the 8 -dimensional genus of even unimodular lattices over $\mathbb{Q}(\sqrt{3})$, we have $j(p) \notin P_{D} J_{F}^{G}$, hence $R(L, p)$ represents both proper spinor genera in gen L. Thus, $R(L, p)$ contains a representative of every class in gen L. Now for each lattice in the graph, the number of neighbors is the same as the number of isotropic lines in $L / p L$. It is shown in [1, p. 21] that if $\operatorname{dim} F L=2 m$, where m is the Witt index of $F L$ at p, then this number is given by

$$
\frac{\left[(N p)^{m}-1\right]\left[(N p)^{m-1}+1\right]}{N p-1}
$$

It follows that each lattice in $R(L, p)$ has exactly 135 neighbors. We present two tables which, for each class in gen L, give the numbers of its neighbors isometric to the various classes in gen L. Since classes in the same proper spinor genus cannot be neighbors of one another (see [2]), it is convenient to arrange all classes of one proper spinor genus in the column and those of the opposite spinor genus in the row.

Let $N(L, K, p)$ denote the number of neighbors of L that are isometric to K. Table 2 shows $N(L, K, p)$ for L coming from a fixed proper spinor genus, say \mathscr{S}_{1}, and K coming from the opposite spinor genus \mathscr{S}_{2}. Note that each row has a sum equal to 135 , which is the total number of neighbors of a fixed class. Table 3 shows $N(L, K, p)$ for L coming from \mathscr{S}_{2} and K coming from \mathscr{S}_{1}. Note that each column now has a sum equal to 135 .

Let L and K be neighbors. Then a relationship exists between $N(L, K, p)$ and $N(K, L, p)$, which is given by the following formula (see [1, p. 48]):

$$
\frac{N(L, K, P)}{N(K, L, P)}=\frac{e(L)}{e(K)}
$$

This provides an alternative method for determining $e(L)$ by starting from a known lattice, say E_{8}, and using Tables 2 and 3, thus giving an additional check of the completeness of our list.
Table 2
Number of neighbors of L isometric to K ，where $L \in \mathscr{S}_{1}$ and $K \in \mathscr{S}_{2}$

$\begin{aligned} & \Theta \\ & Q \\ & Q \end{aligned}$	－	－	－	－	－	－	－	－	\bullet	－	－	－		\bigcirc	2	－	－	0	そ
त̇	\bigcirc	－	－	\bigcirc	－	－	8	－	～	0	～	0		∞	\bigcirc	๑๐	古	\bigcirc	－
$\left\|\begin{array}{c} a \\ \vec{F} \end{array}\right\|$	－	0	－	0	－	0	－	$\bar{\infty}$	－	¢	\bigcirc	$\bar{\infty}$		$\stackrel{\circ}{\circ}$	\bigcirc	\bigcirc	$\bar{\infty}$	0	2
$\left\|\begin{array}{l} \mathrm{E} \\ \mathrm{~N}^{\prime} \end{array}\right\|$	\bigcirc	0	－	0	－	8	0	0	－	0	8	$\stackrel{\sim}{-}$		～／	\bigcirc	0	\bigcirc	－	－
\sim^{*}	－	\bigcirc	－	\bigcirc	－	\bigcirc	\simeq	－	－	－	m	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc
＊	\bigcirc	\bigcirc	－	－	\bigcirc	\simeq	－	0	－	\bigcirc	\simeq	∞		－	\bigcirc	0	0	0	－
$\left\|\begin{array}{l} \mathrm{B} \\ \vec{D} \end{array}\right\|$	－	－	σ	0	0	\bigcirc	m	－	\bigcirc	－	－	\bigcirc		－	\bigcirc	m	0	$\stackrel{\sim}{\sim}$	0
$\left.\begin{aligned} & E \\ & \vec{D} \end{aligned} \right\rvert\,$	0	\bigcirc	$\bar{\infty}$	$\stackrel{\sim}{0}$	$\bar{\infty}$	0	－	\bigcirc	\wedge	－	0			\sim	\％	$\stackrel{\sim}{0}$	0	\bigcirc	－
$\left\lvert\, \begin{gathered} - \\ I_{1} \\ -1 \\ \tilde{I}_{n}^{n} \end{gathered}\right.$	－	8	0	\bigcirc	－	ษ	－	䍖	－	－	0	0		∞	\bigcirc	0	－	－	－
$\left\|\begin{array}{c} y_{8} \\ -1 \\ a^{0} \end{array}\right\|$	－	そ	$\stackrel{\infty}{\sim}$	－	\bigcirc	\sim	\％	－	－	m	\sim	0		－	0	－	0	\bigcirc	\bigcirc
$\left\lvert\, \begin{gathered} 0^{0} \\ \underset{1}{-} \\ 0^{+} \end{gathered}\right.$	－	\sim	$\stackrel{\infty}{\sim}$	\bigcirc	云	0	\sim	\bigcirc	N	－	－	\bigcirc		0	－	\bigcirc	0	\bigcirc	\bigcirc
$\begin{gathered} 0 \\ 0 \\ -1 \\ 40 \end{gathered}$		\simeq	0	－	0	m	－	0	\bigcirc	－	－		－	0	0	－	0	0	\bigcirc
\sim^{∞}	$0 \times \sim$	m	a	m	－	－	\bigcirc	－	－	－	－		－	\bigcirc	0	－	0	－	\bigcirc
$\frac{2}{4}$	4^{∞}	$0 \begin{gathered} 0 \\ 0 \\ -1 \\ 0 \end{gathered}$	\underbrace{a}_{i}	$\underset{\text { A }}{ }$	$\begin{gathered} 0^{2} \\ y^{2} \end{gathered}$	$\xrightarrow{7}$	$\left[\begin{array}{c} 7 \\ 0 \\ -1 \\ 0 \end{array}\right.$		$\underset{\infty}{\Xi}$		${ }^{*}$	स		$\begin{aligned} & E \\ & f \\ & f \end{aligned}$	$\left\lvert\, \begin{aligned} & E \\ & Q \end{aligned}\right.$	$\underset{Q}{\underset{Q}{\theta}}$	$\underset{Q}{\sum}$	$\frac{\Sigma}{Q}$	2

Table 3
Number of neighbors of L isometric to K ，where $L \in \mathscr{S}_{2}$ and $K \in \mathscr{S}_{1}$

$\left\lvert\, \begin{aligned} & E \\ & Q \\ & Q \end{aligned}\right.$	－	－	－	－	－	－	－	－	\bigcirc	σ	－		－	0	N	\bigcirc	－	\bigcirc	－	¢
İ	－	－	－	－	－	－	－	－	\bigcirc	\cdots	－		\simeq	N	\％	\bigcirc	－		\bigcirc	\bigcirc
$\left.\begin{gathered} \Xi \\ \vec{f} \end{gathered} \right\rvert\,$	－	0	－	0	－	－	0	0	∞	m	－		－	＋	in	－	\bigcirc	N	\bigcirc	\bigcirc
E N N	\bigcirc	0	－	\bigcirc	－		σ	－	\bigcirc	－	－		a	\cdots	$\bar{\infty}$	\bigcirc	0	∞	－	－
0^{5}	\bigcirc	\bigcirc	0	－	－	－	－	え	\bigcirc	－	－		$\stackrel{\circ}{\circ}$	\bigcirc	－	0	\bigcirc	－	－	－
＊	0	－	－	－	－	－	in	\bigcirc	－	\bigcirc	\cdots		n	\bigcirc	\bigcirc	－	\bigcirc	－	－	－
$\xrightarrow{\square}$	\bigcirc	0	m	－	－	－	－	$\stackrel{\sim}{\sim}$	0	－	－		\bigcirc	0	－	0	\bigcirc	－	～	\bigcirc
E	\bigcirc	0	m	∞	－	－	0	\bigcirc	0	in	－		\bigcirc	0	$\stackrel{\infty}{\square}$	\bigcirc	∞	\bigcirc	0	\bigcirc
$\left\lvert\, \begin{aligned} & \tilde{N}_{1}^{1} \\ & -1 \\ & \mathcal{N}^{\prime} \end{aligned}\right.$	o	－	－	－	－	－	\simeq	0	～	$\stackrel{\sim}{\infty}$	－		－	N	¢	0	－	－	\bigcirc	－
$\left\|\begin{array}{c} J^{-} \\ -1 \\ 0^{+} \end{array}\right\|$	0	\bigcirc	－	－	－	－	～／	\bigcirc	\bigcirc	\propto	\checkmark		～／	－	¢	－	0	\bigcirc	\bigcirc	－
$\left\|\begin{array}{c} 0^{0} \\ \underset{\sim}{1} \\ 0^{\sigma} \end{array}\right\|$	－	$\stackrel{\sim}{\square}$	a	－	\bigcirc	の	－	$\stackrel{\infty}{\sim}$	－	$\bar{\infty}$	－		－	0	－	0	0	－	－	\bigcirc
$\left\|\begin{array}{c} 0 \\ 0 \\ -1 \\ -4 \end{array}\right\|$	0	え	0	\bigcirc	－	－	$\stackrel{\circ}{\circ}$	0	0	－	－		\bigcirc	－	\bigcirc	0	0	－	－	\bigcirc
\sim^{∞}	\sim	$\stackrel{\infty}{\sim}$	m	$\stackrel{\circ}{2}$	－	－	－	0	－	－	－		\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	－	－
$\left\|\frac{1}{2}\right\|$	4	$\begin{aligned} & 0 \\ & 0 \\ & -1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & E \\ & {\underset{\sim}{*}}^{+} \end{aligned}$	$\underset{A}{\Theta}$	勺	勺	$\begin{aligned} & \overrightarrow{7} \\ & -1 \\ & -4 \\ & \mathrm{~m}^{2} \end{aligned}$	$\left\lvert\, \begin{gathered} 7 \\ 0_{0} \\ -1 \\ v^{\prime} \end{gathered}\right.$	$\sqrt{2}$	$\underset{\infty}{\square}$	∞		¢f	$\begin{aligned} & E \\ & \Xi_{\mathrm{N}} \end{aligned}$	$\begin{gathered} E \\ F \\ f \end{gathered}$	$\left\lvert\, \begin{aligned} & E \\ & Q \end{aligned}\right.$	$\stackrel{\overparen{B}}{\mathrm{Q}}$	$\underset{Q}{E}$	\sum	$\underset{Q}{Z}$

Bibliography

1. J. W. Benham, Graphs, representations, and spinor genera, Thesis, Ohio State University, 1981.
2. J. W. Benham and J. S. Hsia, Spinor equivalence of quadratic forms, J. Number Theory 17 (1983), 337-342.
3. J. H. Conway and N. J. A. Sloane, On the enumeration of lattices of determinant one, J. Number Theory 15 (1982), 83-94.
4. P. J. Costello and J. S. Hsia, Even unimodular 12-dimensional quadratic forms ovr $\mathbb{Q}(\sqrt{5})$, Adv. in Math. 64 (1987), 241-278.
5. K. B. Gundlach, Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen, J. Reine Angew. Math. 220 (1964), 109-153.
6. J. S. Hsia, Even positive definite unimodular quadratic forms over real quadratic fields, Rocky Mountain J. Math. (to appear).
7. J. S. Hsia and D. C. Hung, Even unimodular 8-dimensional quadratic forms over $\mathbb{Q}(\sqrt{2})$, Math. Ann. 283 (1989), 367-374.
8. H. Maass, Modulformen und quadratische Formen über dem quadratischen Zahlkörper $R(\sqrt{5})$, Math. Ann. 118 (1941), 65-84.
9. Y. Mimura, On 2-lattices over real quadratic integers, Math. Sem. Notes Kobe Univ. 7 (1979), 327-342.
10. H.-V. Niemeier, Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number Theory 5 (1973), 142-178.
11. O. T. O'Meara, Introduction to quadratic forms, Springer, Berlin, Heidelberg, New York, 1971.
12. H.-G. Quebbemann, A construction of integral lattices, Mathematika 31 (1984), 137-140.
\rightarrow C. L. Siegel, Über die analytische Theorie der quadratischen Formen. III, Ann. of Math. (2) 38 (1937), 212-291; Gesam. Abh. II (1966), 469-548.
13. I. Takada, On the classification of definite unimodular lattices over the ring of integers in $\mathbb{Q}(\sqrt{2})$, Math. Japon. 30 (1985), 423-433.
14. B. B. Venkov, On the classification of integral even unimodular 24-dimensional and quadratic forms, Trudy Mat. Inst. Steklov. 148 (1978), 65-76; English transl. Proc. Steklov Inst. Math. 4 (1980), 63-74.

Department of Mathematical Sciences, State University of New York at Binghamton, Binghamton, New York 13901

E-mail address: hung@bingvaxu.cc.binghamton.edu

[^0]: Received January 9, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11E12.
 Key words and phrases. Root system, Minkowski-Siegel mass, Hilbert modular form, Eisenstein series, adjacenct lattices.

