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EVEN POSITIVE DEFINITE 
UNIMODULAR QUADRATIC FORMS OVER Q(VTA/) 

DAVID C. HUNG 

ABSTRACT. A complete list of even unimodular lattices over Q(V'3) is given 
for each dimension n = 2, 4, 6, 8. Siegel's mass formula is used to verify the 
completeness of the list. Alternate checks are given using theta series and the 
adjacency graph of the genus at the dyadic prime 1 + X i3. 

1. INTRODUCTION 

The classification of positive definite even unimodular quadratic forms over 
Z has a long history and is consummated in Niemeier's complete enumeration 
of all 24-dimensional forms [ 10]. For dimensions greater than 24, the number of 
even unimodular forms grows exponentially, and complete classifications seem 
virtually impossible. In the case of real quadratic fields, Maass had determined 
in [8] all 4- and 8-dimensional even unimodular forms over the ring of integers 
of Q(V3). Subsequently, all such forms were classified up to dimension 12 over 
Q(V'5) and up to dimension 8 over Q(VT) (see [4, 14, 6, 7]). In this paper we 
will investigate positive definite even unimodular forms over the ring of integers 
of Q(V'3). This field is interesting, as are Q(V'5) and Q(VT), because they 
are the only real quadratic fields which admit new irreducible root systems, 
i.e., root systems other than the classical ADE-types. For small dimensions, 
the root system of an even unimodular form usually determines its class. As 
we will see in the following, this is no longer true for the 8-dimensional forms 
over Q(V'3). In [15] Venkov gave an elegant proof of the classification of the 
24-dimensional even unimodular forms over Z by using the theory of modular 
forms with spherical coefficients. In particular, he showed that the rank of any 
nonempty root lattice must be maximal and that all irreducible components 
in it have the same Coxeter number. While these two properties remain true 
over Q(V3) and over Q(V'2) in the classification cited earlier, they fail to hold 
over Q(V3) for the 8-dimensional forms. We will determine all classes of even 
unimodular forms up to dimension 8. Siegel's mass formula and his theorem 
for degree-one Hilbert-Einstein series are used to verify that our enumeration 
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is complete. We will also present an adjacency graph for the 8-dimensional 
genus, which provides an alternative check of the completeness of the genus. 
For dimensions > 8, a computation of the Minkowski-Siegel mass suggests 
that further algebraic classification by explicit enumerations is quite infeasible. 
Unless otherwise indicated, all terminology and notation will follow those of 
[1 1]. 

2. ANALYTIC MASS FORMULA 

Let F = Q(V'3) and R be the ring of integers of F. Then R = Z[e], where 
= 2 + V is the fundamental unit of F. Let L be a positive definite even 

unimodular R-lattice of rank n . Then n- 0 mod 2 by consideration of the 
local dyadic structure of the lattice. Hence, there is a unique genus of such 
lattices in every even dimension. The Minkowski-Siegel mass of the genus of 
L is given by 

h 

M(L) =Ee(Ld) 

where {L1, .L. , Lh } is a complete set of representatives of the isometry classes 
in the genus of L, and e(Li) is the order of the orthogonal group O(Li) of 
Li. By the main theorem in Siegel's analytic theory of quadratic forms, this 
mass is equal to an infinite product of p-adic representation densities which, 
when computed, yield the following formula (see [13, 6]): 

M(L) = LF(n/2, Xn)H7r 1 S'F(2') 
(Vf-)-non-I)/2 rin 7t ZzIr2( i/2) 

where Xn(p) = (-1/p)n/2 LF(S, Xn) = H1(1 -Xn(p)Np-S)-1 ,and SF(s) is the 
Dedekind zeta function. For n < 8, we have the following table of masses: 

n 2 4 6 8 
2 2 

M(L) 1 4 23 23 .41 
2 33 2 632 29 34*5 214.35.52.7 

3. 8-DIMENSIONAL FORMS 

Let L be a positive definite even unimodular R-lattice of rank n. The root 
system of L is the set L2 = {x E L: Q(x) = 2}. The sublattice RL of L 
generated by L2 is called the root lattice of L. Aside from the classical root 
systems of ADE-types, there is a new irreducible root system over R (see [9]), 
namely 

G = (e - e a(1 + V)e + '(1 - V)e) ] 

where {e,, e2} is an orthonormal basis. Since det G2 = 1, the root system G2 
generates a 2-dimensional even unimodular lattice. Now if L is even unimod- 
ular of rank n, then L l G2 is even unimodular of rank n + 2, hence every 



EVEN UNIMODULAR QUADRATIC FORMS OVER Q(x/3) 353 

class of n-dimensional even unimodular lattices gives rise to a unique class of 
(n + 2)-dimensional even unimodular lattices. We shall construct in this section 
all classes of 8-dimensional even unimodular R-lattices. This will then yield 
complete classifications of the lower-dimensional genera. Our construction is 
based on Kneser's neighborhood method. For each of the lattices that we con- 
struct, we determine its root system and the order of its automorphism group 
with the assistance of a computer. If the root system of L generates a root 
lattice of maximal rank, then e(L) may be computed as follows (see [3]). First 
we decompose the root lattice in L into irreducible components, 

RL=Ll I L2 I ...I Lt 

Then we let G2(L) be the factor group of O(L) by the normal subgroup S(L) 
consisting of those elements which leave invariant all the Li. Moreover, let 
Go(L) be the normal subgroup of S(L) consisting of those elements which, for 
all i, act trivially on L#/Li. Here, L1 is the dual lattice of L1. Finally, we 
let G1 (L) be the factor group S(L)/Go(L). If we denote gk(L) = Gk(L)I for 
0 < k < 2, then e(L) = g0glg2 . On the other hand, if rankRL < rankL, then 
the computation is more complicated. In any case, it is possible to find a base 
consisting of vectors of norm 2 or norm 4. By considering permutations of these 
vectors, e(L) may be computed for lattices with nonmaximal root system. 

We now construct the 8-dimensional even unimodular lattices. 
(1) RL =E8 Let I8 = (e1, I.., e8), where {ei} is an orthonormal basis. 

Then 

E= {z E I8: B(z, e + +e8)= 0 mod 2} + ((e, + + e8)/2) 

= (e, - e2, (e +. + e8)/2, e, + e2, ... , e +e7). 

E8 is already unimodular. Its automorphism group has order e(L) = gg1 g2 = 
14 5 2 14 5 2 

(2 .3 .5 7). 1 .1 = 2 3. 5 .7. 
(2) RL = D8 We have 

D8 ={ZeI8: B(ze? + e8)= 0 mod 2} 

= (e, +e2 , e, 
- e 2 *e, ed -e) 

By adjoining the vectors 

WI \ [(e, + e2) + (e, - e2)] 2 

and 

W2 = 2 [(e, - e2) + + (e, - e8)] 2 

to D8 one obtains an even unimodular lattice 

L = (w1, W2, e, - e3, e - e4, * ,e - e8). 

The automorphism group of L has order e(L) =(27 .8!) .2. 1 215 32 .5 .7. 
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(3) RL = E6 I G2. Since G2 is unimodular, it is necessary to construct a 
6-dimensional unimodular lattice that has the root system E6. Now 

E6 = (el - e2, (el + + e8)/2, el + e2, el +e3, el +e4, el + e5). 

By adjoining the vector 
1 ~e + .+e 

W = - 1 2 - 8 e +(e+e2)+...+(e, +e5) 

to E6, we have an even unimodular lattice 

L =(eI - e2, (el + + e8)/2, el + e 2,.., el + e4, w). 

The lattice L = L' I G2 has root system E6 I G2. Its automorphism group 
hasorder e(L)= ((23.3).(27.34.5)).2. 1=211 .35.5. 

(4) RL = D6 1 G2. Again it is necessary to construct a 6-dimensional 
unimodular lattice that has the root system D6. We have D6 = (e1 + e2, 
e1 -e2, ... , el- e6). Two glue vectors are needed to give a unimodular lattice, 
namely, 

WI = 2 [(el + e2) + (el - e2] 

and 

W2 2-(el +e2) + 2 (el -e2) - 2 [(e - e3)+ + (el - e)] 

Let L' = (w, w2, el - e3, ,el - e6) . Then the lattice L = L' I G 2 has 
root system D6 I G2. Its automorphism group has order 

e(L) =((2 *3).(29 .3 *25)).2. 1 =213 335 

(5) RL = 2D4 (I) (decomposable). We first construct a 4-dimensional even 
unimodular lattice with the root system D4. Let D4 = (el + e2, el - e2, 
e1 - e3, e1 - e4). We adjoin the vectors 

WI = 2/[(el + e2) + (el - e2)] 2 
and 

w =2 [(el - e2) + (el - e3) + (el - e4)] 2 

to D4. Then L' = (wp, W2, el - e3, el - e4) has root system D4. Let L = 

LI I L' be the orthogonal sum of two copies of L'. Then L has root system 2 

2D4. Its automorphism group has order e(L) = (26 3)2 (3!)2 * 2 = 215 * 33. 
(6) RL = 2D4 (II) (indecomposable). Let 

2D4 = (el + e2, el - e2, el - e3, el - e4) I (e5 + e6, e5 - e6, e5 - e7, e5 - e8) 

= (U1, U2, U3, U4) I (U5, U6, U7, U8). 

If we adjoin the vectors 

W1 3 = (1 2) 225+ 61 
=I -f-(u1 + u2) + 2 (u5 + u6) 
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and 

w2 = 2 (2 + u3 + u4) + 2(6 + u7 + u8) 

to 2D4, we obtain an even unimodular lattice with the root system 2D4. The 
lattice L is indecomposable and its automorphism group has order e(L) = 

(2 63) .3! .2 =214 33 
(7) RL = 2G2 I D4. It follows easily from the construction in (5) that there 

is an even unimodular lattice L with root system 2G2 I D4. Its automorphism 
3. 2 6 14. 4 

grouphasorder e(L) = ((2 .3) *(2 *3))*3!*2=2 =2 3 
(8) RL = 4G2 4G2 is already unimodular. Its automorphism group has 

order e(L) = (23 *3)4* 1 * 4! = 215 * 35 
(9) RL= A5 I 3A1 . There is a basis {u, ... , u8} such that 

A 3A (ul 5 ... 5u 2 1 3I(2)1 (2) (2). 

Let L be the lattice with the basis 

{ 1 (?V 3/-u7 -Us) u78 

2V/ [-u1 2u2-3u3?(1 -V')u4-e tu5?V'u6], 

14[_2e1 ?u (2 2\/) ?v'U-2u4 

+ (4+- )u5 -V u6- 3u7u + u8], 

2 -V'4)u1 -2u3? (1 - vT' u 4 u3 e +u4 - 6u5 
1A[( - 421 + 2 + (3- )3- - (2+ )u 

+(1 + 3V)u5 - (3 +V )u6], 

2[5+ 2V)u , - (6 + 2V)u2 + (3 + )u3 - 2cu4 

1~ ~ ~ ~ ~ ~~~~ (1 + - - ( )6 

(8- 2v3)u, + 6U2 - (10 - 4V1)U3 + (12 - 4V3)U4 - (6- 2)u5 

+ (1 + 3/3)U6 - (3 - T)U6]5 

Then L has the root system As I 3A1 . Its automorphism group has order 
e(L) = (23*6!) - 2. 3! = 29 * 33 * 5. 
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(10) RL = 4A1 I D4. We shall construct an even unimodular lattice with 
the root system 4A1 I D4. There is a basis {u, .., u8} such that 

'2 0 1 17 

4A ID4=(ul ...,u8)_(2)1(2)1(2)1(2)1 2 1 

Let L be the lattice with the basis 

1 + V 
3-( v3- u34) 5U3, 

{1 +V-(\~u 

(eulI-Mu2 - Vu3 + u4 - u5 + u6), 

2[-1- Vr)u2 - Gu5 - u6 + (1 - vr)u7 - (1 -V)Ug], 

-U7+U85 
- [-(1 + r)u, + 3u5 +U6 +(3 + r)u7 -(1 + V)U8]5 1 

2[-(3?+ v)u +(1+ v')u2+( 1+ v)u5-(1- -Vr)U6], 

2[(1 - vr)u, - (2 - 2vr)u2 - (3 - vF)U3 - el5 - u6 + 4e- u7]} 

Then L is our desired lattice and its automorphism group has order e(L) = 
4 14 2 (2 *192)*2. 4! = 2 .3 
(11) RL = 2A1 1 2A3. There is a basis {u1, ..., u8} such that 

2 1 O '2 1 O' 

2AI I 2A3 = (ul, . ... ....8.. , u8)(2) 1 (2) 1 (2 1 ) 1............ (2 1). 

Let L be the lattice with the basis 

+vr ( VuI-u2),uI, 

1 
2(-u3 + 2u4 - u5- u6 + 2cu7 -u8) 

1 
-[-(3 - Vr)U3 - (2 - 2vr)U4 - (1 + V")U5 + (1 - 3)U6 

- (2- 2v)u7 - (1 -VI)U8] 

-(-XuI+ U2 - U3 + U5 + U6- 8) 

-(3 - Vr)u - lu3 +2 4 - (2- 3v1)U5 - U+2u7-3 

(-vU3 - vU5 + U6 + U8)' 2[(1 - )U3 - (3 + ")U5 
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Then L has the root system 2A Il 2A3 and its automorphism group has order 
e(L) = (2. 4!)2 .2 .22 = 21 32 . 

(12) RL = G2 I 6A I. It is necessary to construct a 6-dimensional even 
unimodular lattice that has the root system 6A . There is a basis {u1, .u . , u6} 
such that 

6A (ul,.. U6)-(2) (2). 

Let L' be the lattice with the basis 

{2(vru, + U2 + 6), +2 (uI+ U2), 

2 
v3 

(U2 + U3) 
1 

2 
r 

(u3 + U4), 

2 ~~~2 (u?9 

2 (u?3, 2 
2 2/(u4?+u5),S 2 kUS-+FU6) }f. 

Then L' has the root system 6A . The lattice L = G2 L' is even unimod- 
ular with root system G2 I 6A . Its automorphism group has order e(L) = 

((23 3). 26) .1. (24 .32 5)= 23 335 
(13) RL 4A2 . There is a basis {uf, ..., u8} such that 

4A2 (ul, ** U8)-1 2) 1 2)l( 1 2) l 
2 
12 

Let L be the lattice with the basis 

{U3 - U4 - vu7 + u8', -u7 + u8 

3 [-2eu, + cu2 + (1 + vr3)u3 + (1 + vh)u4 - 2u5 + u6]5 

[2u3 -(1 + vr)u4 + u5 - 9 lu6 - 8U7 + (1 + 2vr)U8], 

1 
(-ui + 2u2 + u3 - 2u4 + u5 - 2u6 - vXu7 + 2vru8), 

3 

3 [-2u, + u2 - (2 - 2vr)u5 + (1 - vr)u6 - 28-1U7 + (5 - vr)u8], 

1U 
-1 -1 

34u1 ? u2 -l U3 - U4? + (3- 3V)u6 + (1 - V)U7 + (1 - )U8 

- v"u6 - (10 - 4vr)U7 + (8 - 5vr)U8]} 

Then L has the root system 4A2 and its automorphism group has order e(L) = 

(3 !)4 * 2 * 12=27 . 35 
(14) RL = 8A, (I). There are three inequivalent classes of even unimodular 

lattices with the root system 8A1 . We construct the first one here. There is a 
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basis {u1, ... , u8} such that 

8Al (u, 1 .... , U8) _(2)1 . ...1(2). 

Let L be the lattice with the basis 

2(-ui + u2 + u3 8)5 2 (vu1 -u2), 

(4v3u1 - U2+ v3U7 + U8) 2 (U7 - U8), 
2( ~ -~uv~) 2 
2(-Vu5 - U6 + U7 + vu8), +/X(U / - u6) 

2 (-vT?u3 - U4 + U5 + vTa6)' 2 ( T~3 } 4 

Then L has the root system 8A1. Its automorphism group has order e(L) = 

28 .1.(2 .4!)=215.3. 
(15) RL = 8A1 (II). Let 8AI = (u1, ... , u8) _ (2) 1 1 (2). We construct 

a lattice L with the basis 

{ 2 
T3 

(- 3u 7 + u8), u7, 2 

2(v4u5 - U6 - vTu7 + U8), U5, U4, 

1 
2(U1 + 8U2 + U3 -U4) 

1, -1 
+ 

28 1~ 22 (3 - VT)U5 - (3 - )U7], 

2'[(1 
- VTul -(1 - VT)U3 - VU5 + U6]}. 

Then L has the root system 8A1. Its automorphism group has order e(L) = 

28 127 =215. 
(1 6) RL = 8A1 (III). Again we let 8A, (Ul, *,U8) _(2) 1 1(2). 

Let L be the lattice with the basis 

{ +v 
(V/U7 -U) U7 

_ _ _ _ 

-1 

_ _ _ _ _ _ _ 

U1 
T3 

2 (- 5 6) 2 (u4 vu6), 2 ( + U7) 

1+ u2 + U3 + U4- u5 - 6 - u7 + U8), 

1?V 
(, -IU+ 

1 
-____( 

2 (c u+u2) 2 k1-U3)1 

Then L has the root system 8A1 and its automorphism group has order e(L) = 
8 15 2 2 .1 . 8! =21.32. 5.7. 
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In the following we will consider lattices the root system of which does not 
generate a root lattice of maximal rank. Here it is no longer possible to construct 
the lattices by adjoining glue vectors to the root lattice. Instead we shall con- 
struct them as neighbors of the lattices previously obtained by the glue method. 

(17) RL = D4 Let {ul, u2, ... , u8} be the basis of L4AID4 given in 
(10) and take L to be the neighbor of L4A ID which contains the vector 

2j(vf-u3+ /3u4+u8). Then L has the root system D4 and its automorphism 
group has order e(L) = 212 33 

(1 8) RL = A4. Consider the basis {ul, u2, * , u8} of LA513A giv- 

en in (9). Let L be the neighbor of LA 13A which contains the vector 

-v/'3-(U + V-u5 +u u8). Then L has the root system A4. Its auto- 
72 2 

morphism group has order e(L) = 27 * 3 . 5 
(19) RL = A3. Again consider the basis {fu, u2, ... , u8} of L4A ID 

given in (10). Let L be the neighbor of L4A ID which contains the vector 

vf-(Vr3 + u8). Then L has the root system A3 and its automorphism 
group has order e(L) = 29 . 33 .5. 

(20) RL = G2 . It is necessary to construct a 6-dimensional even unimodular 
lattice with an empty root system. Let {ul, u2, ... , u6} be the basis of the 
6-dimensional lattice with root system 6A1 as given in (12). We take L' to be 
its neighbor which contains the vector 2f(uI + u2). Then L' has an empty 
root system, hence L = G2 I L' is our desired lattice. Its automorphism group 
has order e(L)=211 .35 . 

(2 1) RL = 2A2 (I). There are two inequivalent classes of even unimodular lat- 
tices with the root system 2A2 . The first class arises as a neighbor of L2A 12A3. 
Let {fu, U2, ... , U8} be the basis of L2A 12A given in (11) and let L be the 

neighbor of L2A 12A, which contains the vector j (v3u5 + 3u6+ u7). Then 
6 4 L has the root system 2A2 and its automorphism group has order e(L) = 2 .3 

(22) RL = 2A2 (II). The second class of lattices with root system 2A2 
can be obtained as a neighbor of LA?13A . Using the basis {ul, U2, ..., U8} 

given in (9) for LA 13A and taking its neighbor which contains the vector 

[3 + u7 + (1 + x/3)U8], we obtain a lattice L with root system 2A2. 
The automorphism group of L has order e(L) = 27 * 34. 

(23) RL = 4A1 (I). Again there are two inequivalent classes of even uni- 
modular lattices with the root system 4A1 . First we let {Ju, u2, ... , u8} be 
the basis of L8A (I) given in (14). Let L be the neighbor of L 8A (I) which 

contains the vector 2j(v/,'ul + U7 + u8). Then L has the root system 4A1 . 
1 2 Its automorphism group has order e(L) = 2 

(24) RL = 4A1 (II). Here we use the basis {UI, u2, ..., u8} given 
in (15) for L8A I(I) and take its neighbor which contains the vector 
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2 v(-u5 + 3u7 + U8). This yields a lattice L of root system 4A, . For 
later references, we give a basis for this lattice: {( 1 +?V)u1, U2, U3, U1 -U4, U5, 

U4- U6, u6 - U7, 1j2(/U5 + vu7+ U8)}. Its automorphism group has order 

e(L) = 210 . 3. 

(25) RL = 2A I Consider the basis {ul, u2, ***, u8} of 
L8AI (II) 

given in (15). Let L be the neighbor of L8A (II) which contains the vector 

I-2 4[4U6 + (1 + v)U7 + u8]. Then L has the root system 2A1 and its auto- 
1 1 2 

morphism group has order e(L) = 2 3 
We observed in (20) that there exists a 6-dimensional even unimodular lattice 

with no minimal vectors. Using a method which is analogous to that used in [4] 
(see also [12]) for 12-dimensional even unimodular lattices over Q(V'5), one 
can show that empty root lattices exist over Q(v'-) in each even dimension 
n > 6. More specifically, take K to be the 2-dimensional even unimodular 
lattice G2 and let K = K/2K be the reduction of K mod 2. Then the quadratic 
map Q: K -* R induces a nondegenerate quadratic map Q: K -* R/4R. K 
is hyperbolic, so K = A E A', where A, A' are totally singular. Let B = 

(x,..., x): x E A}, B' = B n (A')n, and C = B ( B'. Put L = {v E 
Kn: v E C}, and define the quadratic map on L as QL = 2Qn, where Qn 

is the quadratic map on Kn induced by Q. Then L is an even unimodular 
lattice of rank 2n. Suppose v = (v1, ... , vn) E L is a minimal vector. Then 

QL(V) = 2, hence Qn(v) = 4. We set Uj = x + yi, x E A, yj E A. If 
no Ui vanishes, then it follows from the inequality between the arithmetic and 
geometric means that 

N(4) = N ( Q(vi)) > n 2 N (IQ(vI)) > 4n 2 

This is impossible when n > 3. For such n, some vi must vanish, which 
implies that Fi = yi for all i. This means that Q(vi) E 4R. Let Q(vi) = 4ai , 
where a1 E R. Since Qn(v) = 4, we have ZI a =1 , where the a1 are 
totally positive integers. It follows that a1 = 1 for some j and ai = 0 for all 
i & j . On the other hand, by construction, we have Evi = 0, which implies 
that Qn(v) = Q(Vj) E 8R. This is a contradiction and hence we obtain 

Proposition. For each n > 3 there exists an even unimodular lattice over Q(VJ-) 
of rank 2n which has an empty root system. 

We now continue our construction of 8-dimensional even unimodular lattices 
over Q(V3). All remaining lattices will have empty root system. 

(2 6) RL= 0 (I). Let {u1, u2, ... , u8} be the basis of L8A (I) given in (14) 

and let L be its neighbor containing the vector 12 j'(Vu3 + u7). Then L has 

empty root system and its automorphism group has order e(L) = 211 33 . 
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(27) RL = 0 (II). We use the basis {u1, u2, 5 **, u8} of L8A, (II) given in 

(15) and take L to be its neighbor containing the vector 1 (v'3u3+u6). Then 
L has empty root system and its automorphism group has order e(L) = 21 132. 

(28) RL = 0 (III). Consider the basis {u1 , u2, ... , u8} of L8A (I) 

given in (14). Let L be the neighbor of L8A (I) containing the vector 

-v/'3-(-u1 + V3u6 + u8). Then L has empty root system and its automor- 
14 3 phism group has order e(L) = 2 3 

(29) RL = 0 (IV). Let {ul, u2,. .., u8 } be the basis of L4A (II) given 
in (24). We take L to be the neighbor of L4A (II) containing the vector 

-l 2(/u3 + u6). Then L has an empty root system and its automorphism 
group has order e(L) = 27 35. 

(30) RL = 0 (V). Consider the basis {uI, u2, ... , u} of L8AJ (III) given in 
(16) and take L to be its neighbor containing the vector 

I - V3 
2 [v/u, + u2 + vu4 + /u5 + 36 + (1 + )u7 + U8] 

Then L has an empty root system and its automorphism group has order 
e(L) = 2 14.35 .52.7. 

(31) RL = 0 (VI). Let {ul, u2, ..., u8} be the basis of L4A, (II) given in 

(24) and let L be its neighbor containing the vector f (V'u3 + u7). Then L 
has an empty root system and its automorphism group has order e(L) = 2X33 .5. 

This completes our construction of 8-dimensional even unimodular lattices 
over Q(v/3). We summarize our computations in Table 1. 

Upon summing the reciprocals of the e(Li), we obtain 

31 2 2 z 1 23 .41 
e(L) -214 35 52 2 

which is exactly the mass predicted by the mass formula. Thus we have: 

Theorem 1. There are precisely 31 distinct classes in the genus of positive definite 
even unimodular lattices of rank 8 over Q(vX3). 

As an immediate consequence of Theorem 1 and the remark made in the first 
paragraph of this section, we have 

Theorem 2. (1) There are precisely six distinct classes of positive definite even 
unimodular lattices of rank 6 over Q(v/'), which are distinguished by their root 
systems E6, D6, D4 1 G2, 3G2, 6A1, and 0. 

(2) There are precisely two distinct classes of positive definite even unimodular 
lattices of rank 4 over Q(X) which are distinguished by their root systems D4 
and 2G2. 

(3) There is precisely one class of positive definite even unimodular lattice of 
rank 2 over Q(V'3), namely G2. 
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TABLE 1 
Even unimodular lattices over Q(V3) and the orders of their 
automorphism groups 

Li go(Li) g, (Li) g2(Li) e(Ld) 
14 5 2 14 2 2 3 .5 .7 1 1 2 *3 5 *7 

7 ~~~~~~~~~~~~15 2 D 8 27 d8! 2 1 2 3 5 .7 
7 4 3 11 5 E6 1 G2 (2 *3 *5) (2 *2) 2 1 2 *3 5 

9 2 3 12 3 D6 1 G2 (2 *3 *5) (2 .3) 2 1 2 .3 .5 

2D4 (I) (26 .3)2 (3!)2 2 215 .34 
62 3 2 14 3 2D4 (II) (2 . 3) 3! 2 214. 3 

2G2 I D4 (23 3)2 .(26 .3) 3! 2 214. 34 

4G2 (23 . 3)4 1 4! 215. 35 

A5 1 3A1 23. 6! 2 3! 29 3 5 
4 14 2 D4 1 4A1 24. 192 2 4! 21 3 

)2 ~~ ~~~~~2 11 2 2A3 1 2A1 (2 * 4!)2 2 2 2 .3 
3 6 1 2 1335 .3 G2 I 6A1 (2 * 3) 26 24 32 13 35 

4A2 (3!)4 2 12 27 35 

8A1 (I) 28 1 24 4! 2 . 3 

8A1 (II) 28 1 27 214 
8 1 8A1 (III) 2 1 8! 215 . 32. 5 .7 

12 3 

7 2 2 

A3 - -2- ~9 3 

G2 2 - -11 5 

6 4 
2A2(I) - - - 2 3 

2A2 (II) - - - 2 3 

4A(I 
_ 
- - - 212 

4A1 (II) - - - 213 
11 2 2A1 - - - 2 3 

0 (I) _ 211 33 5 
11 2 0 (II) _ - - 2 .3 
14 3 

0 (III) _ 2 .3 

0 (IV) 2 .3 
14 5 2 

0 (V) _ 2 .3 .5 7 

0 (VI) 27.3. 5 

Remark. In [15] Venkov showed that if RL $ 0, then the root system RL of 
a 24-dimensional even unimodular lattice L over Z possesses the following 
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properties: 
(1) rankRL is maximal (i.e., rankRL = 24), and 
(2) all irreducible components of RL have the same Coxeter number. 

These properties remain true for even unimodular lattices over Q(V'3) in di- 
mensions up to 12, and over Q(V'2) in dimensions up to 8 (see [4, 7]), but no 
longer hold over Q(vI3) when the dimension is 8. 

4. THETA SERIES 

Let H+ x =H{(zl, z2): ImzZ >0, Imz2 <01, i.e., H+ xH is the 
product of the upper half plane and the lower half plane. A Hilbert modular 
form of weight k for the Hilbert modular group SL2(Z[e]) is a holomorphic 
function f on H+ x H satisfying the condition 

f(az1 + d cz2+ (C Ic + d)"(Tz2 + d)kf(z,, Z2) 

for any matrix [a d] E SL2(7Z[e]). Here, ia is the conjugation of a. Every 
Hilbert modular form f has a Fourier expansion of the form 

f(z) = Cf(0) + z cf(v)e 2,tia(vz/2V'3) 

V>0 

Let L be an even unimodular lattice over Q(v') of rank n. Then the theta 

series of L, 

eL(Z) = E 
e2nia(Q(x)z/2v) = 1 + c 27ria(vz/2V3) 

xEL v>0 

is a Hilbert modular form of weight n, where CL(v) = #{X E L: Q(x) = 2v}. 
If Li = L, L2, ..., Lh is a complete set of representatives of the distinct 

classes in the genus gen L of L, then Siegel's theorem on the average number 

of representations of a number by gen L is given by 

(*) 1([) h, eL(Z) G Gn/2(z), 

where Gn/2(z) = 1 + > Cnl/2(v)e27ia(vz/23) is the Eisenstein series of weight n 

From [5] we have 

Cn/2(V) = bn/2 E (sign Nfl)nl/2 JNfl n/2- 

and 

b (27r) nVT n/2 (]F(n2))2 ln2QA) 

For n = 8, we compute 

(27r)'vT- _ 240 
b4 =(3!)2124 3 _4) 23 
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Applying (*) to the genus of 8-dimensional even unimodular lattices, we have 

1 h CL(l) 240 
M XE(L) 4 23 

Using the 31 lattices in the genus and M(L) = M8, we obtain 

1 
31 C 2 14 3 5 

527 

f8 e(Ld) 232. 412 

2& 
. . 5 2 

+ 
. 7 2 .3 7 

214 * 3s* 52.7 215.32.5.7 211 5 5 
3 2 4 4 4 2.3 24.3 243 243 

+ 213 .3 215 .4 214 3 214. 34 
4 2 2 5 2 2.3 2 .3 2 2.7 

2 15 35+ 2 .33. 5 + 214. 32 + 211 32 

23.3 23.3 2 2 
+213 33.5 + 

27. + 215. +15 
4 3 2 2 233 2.5 

+ 215 32.5. + 
212 3 + 2 .32 . 

2 2.. 2 2 2.3 2..3 2 3 2 3 
+ 

3 
+ 

- 
+ 

29 

.33 
. 

5 211 . 35 . 5 26 .34 2 . 34 

+23 2?3 2 232) 240 

This calculation shows that the only lattices which admit vectors of quadratic 
norm 2 are exactly those previously obtained in our constructions. 

5. ADJACENCY GRAPH 

We present in this section an adjacency graph for the 8-dimensional genus of 
even unimodular lattices of Q(v3) at a dyadic prime. Let p be the ideal 
generated by (1 + V'3). For a lattice L in the genus, the vertices of the 
graph R(L, p) are those lattices M E G = genL such that Mq = Lq for all 
primes q :$ p . Two vertices M and M' are joined by an edge in R(L, p) if 
[MA: M n M'] = [M' : M n M'] = Np, where Np is the number of residue 
classes mod p. In this case, we say that M and M' are neighbors (or adja- 
cent) in R(L, p). If K E IR(L, p)j, then R(L, p) contains a representative 

tG of every class in the proper spinor genus spn+(K) . Let JFG be the subgroup of 
the idele group JF consisting of those ideals (iq) such that q E 6 (O+ (Lq)) for 
all q < oc, where 0 is the spinor norm function. Let PD be the subgroup of 
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principal ideles with respect to D = 0(O+(V)). By a routine computation, we 
G have [JF: PDJ] = 2, hence there are two proper spinor genera in the genus 

of L. Let g+ (L, p) be the number of proper spinor genera represented by 
R(L, p). Then a result in [2] shows that 

+ ~~~~~~~~~G 
g+(L, p) = I if and only if j(p) E PDJF, 

where j(P) E JF is defined by 

1 1, q7 p, 
J(P)q = 

7 X q = p. 

Here, Xr is a fixed prime element in Fp. For the graph of the 8-dimensional 

genus of even unimodular lattices over Q(V0(), we have j(p) D PD 4I hence 
R(L, p) represents both proper spinor genera in gen L. Thus, R(L, p) con- 
tains a representative of every class in gen L. Now for each lattice in the graph, 
the number of neighbors is the same as the number of isotropic lines in L/pL. 
It is shown in [1, p. 21] that if dim FL = 2m, where m is the Witt index of 
FL at p, then this number is given by 

[(Np)m - 1][(Np)m1 + 1] 
Np- I 

It follows that each lattice in R(L, p) has exactly 135 neighbors. We present 
two tables which, for each class in gen L, give the numbers of its neighbors 
isometric to the various classes in genL. Since classes in the same proper 
spinor genus cannot be neighbors of one another (see [2]), it is convenient to 
arrange all classes of one proper spinor genus in the column and those of the 
opposite spinor genus in the row. 

Let N(L, K, p) denote the number of neighbors of L that are isometric 
to K. Table 2 shows N(L, K, p) for L coming from a fixed proper spinor 
genus, say 5I, and K coming from the opposite spinor genus 5'2 . Note that 
each row has a sum equal to 135, which is the total number of neighbors of a 
fixed class. Table 3 shows N(L, K, p) for L coming from 5'2 and K coming 
from 5'lj. Note that each column now has a sum equal to 135. 

Let L and K be neighbors. Then a relationship exists between N(L, K, p) 
and N(K, L, p), which is given by the following formula (see [1, p. 48]): 

N(L, K, P) _ e(L) 
N(K, L, P) e(K)- 

This provides an alternative method for determining e(L) by starting from a 
known lattice, say E8, and using Tables 2 and 3, thus giving an additional check 
of the completeness of our list. 
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